摘要:
A DRAM stack capacitor and a fabrication method thereof has a first capacitor electrode formed of a conductive carbon layer overlying a semiconductor substrate, a capacitor dielectric layer and a second capacitor electrode. The first capacitor electrode is of crown shape geometry and possesses an inner surface and an outer surface. The DRAM stack capacitor features the outer surface of the first capacitor electrode as an uneven surface.
摘要:
A method for fabricating a semiconductor a semiconductor device having a stacked-gate structure. A polysilicon layer is formed overlying a substrate, which is insulated from the substrate by a dielectric layer. A metal-flash layer is formed overlying the polysilicon layer, and then a tungsten nitride layer is formed overlying the titanium layer. The tungsten nitride layer is annealed using nitrogen and hydrogen gases. A tungsten layer and a cap layer are successively formed overlying the tungsten nitride layer.
摘要:
A method for fabricating a bottle-shaped deep trench. The method comprises providing a substrate having a pad layer thereon, etching the pad layer and the substrate to form a deep trench in the substrate, performing an ALD process to form a nonmetal layer on the pad layer and on an upper portion of the sidewall of the deep trench, and performing an isotropic etching process to the sidewall and the bottom surface of the deep trench by taking the nonmetal layer as a hard mask so as to form a bottle-shaped deep trench.
摘要:
A method of reducing trench aspect ratio. A trench is formed in a substrate. A conformal Si-rich oxide layer is formed on the surface of the trench by HDPCVD. A conformal first oxide layer is formed on the Si-rich oxide layer by HDPCVD. A conformal second oxide layer is formed on the first oxide layer by LPCVD. Part of the Si-rich oxide layer, the second oxide layer and the first oxide layer are removed by anisotropic etching to form an oxide spacer composed of a remaining Si-rich oxide layer, a remaining second oxide layer and a remaining first oxide layer. The remaining second oxide layer, part of the remaining first oxide layer and part of the Si-rich oxide layer are removed by BOE. Thus, parts of the remaining first and Si-rich oxide layers are formed on the lower surface of the trench, thereby reducing the trench aspect ratio.
摘要:
The present invention provides a method for manufacturing a stacked gate structure in a semiconductor device. The method includes the steps of sequentially forming a gate dielectric layer, a poly-silicon layer, a metal layer, a barrier layer, and a tungsten layer on a semiconductor substrate, carrying out a rapid thermal annealing (RTA) in a nitrogen ambient, forming a silicon nitride layer on the tungsten layer, and patterning the multilayer thin-film structure into a predetermined configuration.
摘要:
The present invention provides a method for manufacturing a stacked-gate structure in a semiconductor device. The method includes the steps of sequentially forming a gate dielectric layer, a poly-silicon layer, a titanium layer, and a WNX layer on a semiconductor substrate, carrying out a rapid thermal annealing (RTA) in a nitrogen ambient, forming a silicon nitride layer on the tungsten layer, and patterning the multilayer thin-film structure into a predetermined configuration.
摘要:
A manufacturing method of a high aspect ratio shallow trench isolation region. A substrate with a trench therein is provided and placed into a chamber. A first insulation layer is formed on the substrate as well as inside the trench by high density plasma chemical vapor deposition. The majority of the first insulation layer outside the trench is removed by in situ etching using carbon fluoride as an etching gas with high selectivity for SiO2/SiN etching ratio, and a second insulation layer is formed on the first insulation layer by high density plasma chemical vapor deposition, filling the trench. According to the present invention, a high aspect ratio shallow trench isolation region without voids can thus be achieved.
摘要:
A method for fabricating an RRAM is provided. First, a bottom electrode is formed. A resistive layer is formed on the bottom electrode. A top electrode is then formed on the resistive layer, wherein the top electrode is selected from the group consisting of indium tin oxide (ITO) and indium zinc oxide (IZO). Finally, the top electrode is irradiated with UV light.
摘要:
A memory structure includes an active area surrounded by first isolation trenches and second isolation trenches; a bit line trench recessed into the active area of the semiconductor substrate; a word line trench recessed into the active area of the semiconductor substrate and being shallower than the bit line trench. The bit line trench and the word line trench together divide the active area into four pillar-shaped sub-regions. A bit line is embedded in the bit line trench. A word line is embedded in the word line trench. A vertical transistor is built in each of the pillar-shaped sub-regions. A resistive memory element is electrically coupled to the vertical transistor.