Abstract:
The invention provides methods for the production of full-color, subpixellated organic electroluminescent (EL) devices. Substrates used in the methods of the invention for production of EL devices comprise wells wherein the walls of the wells do not require surface treatment prior to deposition of electroluminescent material. Also provided are EL devices produced by the methods described herein.
Abstract:
A method of fabricating a field emission device cathode using electrophoretic deposition of carbon nanotubes in which a separate step of depositing a binder material onto a substrate, is performed prior to carbon nanotube particle deposition. First, a binder layer is deposited on a substrate from a solution containing a binder material. The substrate having the binder material deposited thereon is then transferred into a carbon nanotube suspension bath allowing for coating of the carbon nanotube particles onto the substrate. Thermal processing of the coating transforms the binder layer properties which provides for the adhesion of the carbon nanotube particles to the binder material.
Abstract:
A field emission device and method of forming a field emission device are provided in accordance with the present invention. The field emission device is comprised of a substrate (12) having a deformation temperature that is less than about six hundred and fifty degrees Celsius and a nano-supported catalyst (22) formed on the substrate (12) that has active catalytic particles that are less than about five hundred nanometers. The field emission device is also comprised of a nanotube (24) that is catalytically formed in situ on the nano-supported catalyst (22), which has a diameter that is less than about twenty nanometers.
Abstract:
A field emission device and method of forming a field emission device are provided in accordance with the present invention. The field emission device is comprised of a substrate (12) having a deformation temperature that is less than about six hundred and fifty degrees Celsius and a nano-supported catalyst (22) formed on the substrate (12) that has active catalytic particles that are less than about five hundred nanometers. The field emission device is also comprised of a nanotube (24) that is catalytically formed in situ on the nano-supported catalyst (22), which has a diameter that is less than about twenty nanometers.
Abstract:
There is provided a process of forming a regular array of rows of subpixels on a workpiece. The subpixels having 3 different colors, and a subpixel pitch s. Of the three colors, q colors are formed by printing and r colors are formed by a non-printing method. The process includes the steps: (1) providing a printing head having z nozzles arranged in a row with a spacing between the nozzles of p, where z=3n1 and p=2s, the printhead being at a first position relative to the workpiece; (2) providing q different printing inks, one for each of the q printed colors; (3) supplying each of the printing inks to the nozzles in a regular alternating pattern; (4) printing a first set of z rows of subpixels with the printing head; (5) moving and printing in a first pattern with the steps: (a) moving the workpiece laterally relative to the printing head by a distance d1, where d1=3n2; and (b) printing a set of z rows of subpixels with the printing head; (6) moving and printing in a second pattern with the steps: (c) moving the workpiece laterally relative to the printing head by a distance d2, where d2=3n3, such that d1+d2=pz; and (d) printing a set of z rows of subpixels with the printing head; (7) repeating steps (5) and (6) multiple times in the same order; and (8) applying r colors by a non-printing method.Variables include: n1, an integer greater than 0; n2 and n3, odd integers, such that n2+n3=2n1; q, an integer from 1-3; and r, an integer, such that q+r=3.
Abstract:
There is provided a method of forming a regular array of rows of subpixels on a workpiece. The subpixels have c different colors, where a colors are formed by printing. The subpixel pitch is s. The method includes (a) providing a printing head having a sets of z adjacent nozzles arranged in a row, wherein the spacing between adjacent nozzles within the same set is p1=cs and the spacing between adjacent nozzles in different sets is p2=(c+1)s, the printing head being at a first position relative to the workpiece; (b) providing a different printing inks, one for each of the a colors; (c) supplying each of the printing inks to the nozzles such that each of the nozzles within a set receive the same color and a different color is supplied to each set of nozzles; (d) printing a first set of az rows of subpixels with the printing head; (e) moving the workpiece laterally relative to the printing head by a distance d, where d=cz(s); (f) printing a second set of az rows of subpixels with the printing head; and (g) repeating steps (e) and (f) n−2 times for a total of n sets of az rows of subpixels. In the process, a, c, n, and z are independently integers greater than 1.
Abstract:
There is provided herein a process for forming an encapsulated electronic device. The device has active areas and sealing areas on a substrate. The process includes providing the substrate; forming a discontinuous pattern of a material having a first surface energy on at least a portion of the sealing areas; forming multiple active layers, where at least one active layer is formed by liquid deposition from a liquid medium having a surface energy greater than the first surface energy; providing an encapsulation assembly; and bonding the encapsulation assembly to the substrate in the sealing areas. Also provided are devices formed by the disclosed processes.
Abstract:
There is provided a backplane for an organic electronic device. The backplane has a TFT substrate; a multiplicity of electrode structures; and a bank structure defining a multiplicity of pixel openings on the electrode structures. The bank structure has a height adjacent to the pixel opening, hA, and a height removed from the pixel opening, hR, and hA is significantly less than hR.
Abstract:
In one embodiment, a containment structure (230) for an organic composition (240) is provided. The containment structure (230) includes an undercut layer (210) and an overlying layer (220), wherein the undercut (210) and overlying (220) layers define a volume for receiving the organic composition (240) in liquid form.
Abstract:
The invention provides methods for the production of full-color, subpixellated organic electroluminescent (EL) devices. Substrates used in the methods of the invention for production of EL devices comprise wells wherein the walls of the wells do not require surface treatment prior to deposition of electroluminescent material. Also provided are EL devices produced by the methods described herein.