Abstract:
A solid-state energy conversion device and method of making is disclosed wherein the solid-state energy conversion device is formed through the conversion of an insulating material. In one embodiment, the solid-state energy conversion device operates as a photovoltaic device to provide an output of electrical energy upon an input of electromagnetic radiation. In another embodiment, the solid-state energy conversion device operates as a light emitting device to provide an output of electromagnetic radiation upon an input of electrical energy. In one example, the photovoltaic device is combined with a solar liquid heater for heating a liquid. In another example, the photovoltaic device is combined with a solar liquid heater for treating water.
Abstract:
An optical device and method is disclosed for forming the optical device within the wide-bandgap semiconductor substrate. The optical device is formed by directing a thermal energy beam onto a selected portion of the wide-bandgap semiconductor substrate for changing an optical property of the selected portion to form the optical device in the wide-bandgap semiconductor substrate. The thermal energy beam defines the optical and physical properties of the optical device. The optical device may take the form of an electro-optical device with the addition of electrodes located on the wide-bandgap semiconductor substrate in proximity to the optical device for changing the optical property of the optical device upon a change of a voltage applied to the optional electrodes. The invention is also incorporated into a method of using the optical device for remotely sensing temperature, pressure and/or chemical composition.
Abstract:
An apparatus and method is disclosed for increasing the thermal conductivity in a substrate of a non-wide bandgap material comprising the steps of directing a thermal energy beam onto the substrate in the presence of a first doping gas for converting a region of the substrate into a wide bandgap material to enhance the thermal conductivity of the substrate for cooling the non-wide bandgap material. In one example, the invention is incorporated into a carbon rich layer formed within the wide bandgap material. In another example, the invention is incorporated into a carbon rich layer formed within the wide bandgap material having basal planes disposed to extend generally outwardly relative to an external surface of the substrate to enhance the cooling of the substrate.
Abstract:
An apparatus and method is disclosed for drawing continuous metallic wire having a first diameter to a metallic fiber having a reduced second diameter. A feed mechanism moves the wire at a first linear velocity. A laser beam heats a region of the wire to an elevated temperature. A draw mechanism draws the heated wire at a second and greater linear velocity for providing a drawn metallic fiber having the reduced second diameter.
Abstract:
A laser apparatus and methods are disclosed for synthesizing areas of wide-bandgap semiconductor substrates or thin films, including wide-bandgap semiconductors such as silicon carbide, aluminum nitride, gallium nitride and diamond to produce electronic devices and circuits such as integral electronic circuit and components thereof.
Abstract:
An improved gas burner for a gas burner assembly and method of making is disclosed comprising a porous burner element extending between a first and a second end. The porous burner element comprises a sintered matrix of metallic fibers. A first end cap is formed from a rigid metallic material and is secured to the first end of the porous burner element. A second end cap comprises a sintered matrix of metallic fibers. The second end cap is secured to the second end of the porous burner element solely by the metallic fibers of the porous burner element bonding with the metallic fibers of the second end cap. In another embodiment of the invention, the porous burner element has a plurality of pleats for increasing the surface area of the porous burner element.
Abstract:
The process for making fine metallic mesh is disclosed comprising the steps of cladding an array of metallic wires with an array cladding material to provide an array cladding. The array cladding is drawn for reducing the diameter thereof and for reducing the corresponding diameters of each of the metallic wires for producing a clad array of fine metallic fibers within the array cladding. The array cladding is fashioned into a mesh by weaving, braiding, crocheting and the like thereby forming a series of bends in the clad array for reducing interaction between adjacent portions of the array cladding. The array cladding material is removed for producing fine metallic mesh from the array of the fine metallic fibers.
Abstract:
Laser apparatus and methods are provided for synthesizing areas of ceramic substrates or thin films, such ceramics as Silicon Carbide and Aluminum Nitride, to produce electronic devices and circuits such as sensors as integral electro circuit components thereof. Circuit components such as conductive tabs, interconnects, wiring patterns, resistors, capacitors, insulating layers and semiconductors synthesized on the surfaces and within the body of such ceramics. Selected groupings and arrangements of these electronic circuit components within the substrates or thin films provide a wide range of circuits for applications such as digital logic elements and circuits, transistors, sensors for measurements and monitoring effects of chemical and/or physical reactions and interactions of materials, gases, devices or circuits that may utilize sensors. The electronic elements and components offer the advantages of providing thermal compatibilities with the substrate, since they are an integral part thereof and consequently are compatible therewith regarding thermal coefficients of expansion and thermal dissipation.
Abstract:
Enhanced thermal and electrical properties of ceramic for high-power integrating substrates are provided by focused thermal energy sources such as by laser processing. A thin ceramic layer, such as alumina, is plasma spray deposited on a relative thick metal substrate, such as copper or alloy thereof, as a heat sink for improved dielectric and thermal properties which are produced by laser-reflow and recrystallization so as to convert and provide a different ceramic of higher dielectric and denser structure. Laser-reflow and recrystallization causes a purification or purging and conversion process that vaporizes deleterious impurities and changes the crystalline structure while densifying the resulting structure of the ceramic layer. After conversion of the ceramic layer a metal coating may be plasma spray deposited thereon and electrical circuit elements and wiring patterns may be formed thereon by laser etching for high power applications, such as heat-sinks, electronic control modules, or heating panels. As another aspect, ceramic coated metal substrates with recesses or cavities formed therein contiguous with its surfaces, may be laser-reflow processed for containing microelectronic circuit chips and devices in multilayer chip module (MCM) applications. Alternatively, ceramic substrates with cavities formed in the surfaces thereof may be laser-reflow processed for such multilayer applications.
Abstract:
Metal and ceramic particles of various morphologies are clad with a coating from the transition metal group consisting of silver, gold, copper, nickel, iron, cobalt, aluminum etc., or combinations thereof, to provide improved coated particles for microelectronics or metal matrix composites or other uses. Refractory metal precursor core particles, such as tungsten, molybdenum, niobium and zirconium, as examples, are provided from a composite of tungsten and copper, for example, made by pressurizing and infiltrating or liquid phase sintering of molten copper into a porous tungsten skeleton. Precursor chip particles derived from a tungsten impregnated billet are used as starter particles which may be further enhanced by cogrinding in an attritor ball mill with smaller copper particles to thereby produce an enhanced copper clad-coating of tungsten particles with predetermined percent by weight of copper and tungsten content. The resulting particles exhibit improved electrical and thermal expansion coefficient matching properties for use on microelectronic ceramic substrates and when used for metal matrix composition, provides more uniform distribution of the dispersed strengthening particulate phase in the matrix. In another embodiment, ceramic particles are clad-coated with selected metals so that they can be used in ceramic-metal matrices, thereby producing systems wherein the components are uniformily didpersed throughout the system.