Abstract:
A process for converting mixtures of C.sub.6 to C.sub.30 n-paraffin and n-paraffin by-products to substantially pure n-paraffin which comprises catalytically hydrogenating the mixture at a temperature of from about 600.degree. to 750.degree.F. in the presence of a Group VIII metal on alumina catalyst, and from about 10 to 5,000 parts per million of nitrogen present as ammonia or an organonitrogen compound. The catalyst can additionally contain a Group VIB or VIIB metal.
Abstract:
A process for converting mixtures of C.sub.6 to C.sub.30 n-paraffin and n-paraffin by-products to substantially pure n-paraffin which comprises catalytically hydrogenating the mixture at a temperature of from about 600.degree. to 750.degree.F. in the presence of a Group VIII metal on alumina catalyst, and from about 10 to 5,000 parts per million of nitrogen present as ammonia or an organonitrogen compound. The catalyst can additionally contain a Group VIB or VIIB metal.
Abstract:
A process is provided for continuously controlling the hydrocarbon heat content and flow rate of a partial oxidation unit feed-gas stream under conditions where the composition and hence the hydrocarbon heat content of the feed-gas stream is subject to variation. The hydrocarbon heat content of the incoming gases is continuously measured and compared against a design hydrocarbon heat content. An evaluating means calculates whether a moderator is required to decrease the hydrocarbon heat content to the design hydrocarbon heat content or a supplemental high hydrocarbon heat content gas is required to increase the hydrocarbon heat content to the design hydrocarbon heat content. The process utilizes recycle synthesis gas as a moderator. Once the determination is made, the process automatically adjusts flow rates of the recycle synthesis gas stream, the supplemental high hydrocarbon heat content gas stream and the incoming feed-gas stream to provide a partial oxidation unit feed-gas stream with a constant optimum hydrocarbon heat content and flow rate.
Abstract:
Part of CO-rich syngas, including volatile metal or any acid impurities, reacts with water making cleaned, heated, H.sub.2 -enriched syngas. The rest of the impure CO-rich syngas is combined with hot, H.sub.2 -enriched syngas making cleaned, H.sub.2 -rich syngas, useful for making methanol or oxo compounds.
Abstract:
A partial oxidation process for the production of a stream of hot clean gas substantially free from particulate matter, ammonia, alkali metal compounds, halides and sulfur-containing gas for use as synthesis gas, reducing gas, or fuel gas. A hydrocarbonaceous fuel comprising a solid carbonaceous fuel with or without liquid hydrocarbonaceous fuel or gaseous hydrocarbon fuel, wherein said hydrocarbonaceous fuel contains halides, alkali metal compounds, sulfur, nitrogen and inorganic ash containing components, is reacted in a gasifier by partial oxidation to produce a hot raw gas stream comprising H.sub.2, CO, CO.sub.2, H.sub.2 O, CH.sub.4, NH.sub.3, HCl, HF, H.sub.2 S, COS, N.sub.2, Ar, particulate matter, vapor phase alkali metal compounds, and molten slag. The hot raw gas stream from the gasifier is split into two streams which are separately deslagged, cleaned and recombined. Ammonia in the gas mixture is catalytically disproportionated into N.sub.2 and H.sub.2. The ammonia-free gas stream is then cooled and halides in the gas stream are reacted with a supplementary alkali metal compound to remove HCl and HF. Alkali metal halides, vaporized alkali metal compounds and residual fine particulate matter are removed from the gas stream by further cooling and filtering. The sulfur-containing gases in the process gas stream are then reacted at high temperature with a regenerable sulfur-reactive mixed metal oxide sulfur sorbent material to produce a sulfided sorbent material which is then separated from the hot clean purified gas stream having a temperature of at least 1000.degree. F.
Abstract:
Municipal sanitary sewage sludge is disposed of by an improved partial oxidation process without polluting the environment. Aqueous slurries of sewage sludge are upgraded by being sheared without heating, concentrated if necessary, and then mixed with a supplemental fuel, preferably coal. In one embodiment, the aqueous slurry of sewage sludge and the supplemental coal and/or petroleum coke are introduced into a shearing mixer for simultaneous shearing and mixing together. A pumpable aqueous slurry of sewage sludge-coal and/or petroleum coke is thereby produced having an increased amount of total solids and an increased heat content (HHV) as well as containing an increased amount of sewage sludge for reacting with free-oxygen containing gas in a free-flow partial oxidation gas generator. Hot quench water or steam produced by cooling the hot raw effluent stream of synthesis gas, reducing gas or fuel gas from the gasifier may provide heat for indirect heat exchange with other streams in the process.
Abstract:
Synthesis gas, fuel gas, or reducing gas is produced by the noncatalytic partial oxidation of a sulfur-containing liquid hydrocarbonaceous fuel or a slurry of sulfur-containing solid carbonaceous fuel with a free-oxygen containing gas in the free-flow reaction zone of a refractory lined gas generator at an autogenous temperature in the range of about 1900.degree. F. to 2900.degree. F. and above the ash-fusion temperature of the slag formed in the reaction zone, so that about 75 to 95 weight percent of the carbon in the fuel feed to the reaction zone is converted into carbon oxides. At least a portion of the hot effluent gas stream from the reaction zone is passed through a free-flow radiant cooler in admixture with an iron-containing additive. In the radiant cooler at least a portion of the sulfur-containing gases e.g. H.sub.2 S and COS react with the iron-containing additive to produce particulate matter comprising iron oxysulfide. Further, a portion of this newly formed particulate matter and/or the iron-containing additive combine with molten slag and/or ash in the hot raw gas stream passing through the radiant gas cooler. The slag produced thereby has a reduced ash fusion temperature and a reduced viscosity. The remainder of the newly formed particulate matter comprising iron oxysulfide and particulate carbon are entrained in the effluent gas stream leaving the radiant syngas cooler and are separated from the effluent gas stream and optionally recycled to the partial oxidation reaction zone in admixture with fresh fuel feed.
Abstract:
Process for producing synthesis gas, reducing gas, or fuel gas substantially free-from volatile metal hydride impurities e.g. a hydride of arsenic, germanium, antimony, lead, tin, silicon, and mixtures thereof starting with the partial oxidation of liquid hydrocarbon fuel and/or solid carbonaceous fuel containing at least one mtal impurity from Group IV A and V A of the Periodic Table of Elements. At least one intermetallic reaction product of said metal impurity from Group IV A and V A leaves the gas generator in admixture with the hot raw process gas stream. A metal hydride forms when the gas stream is quench cooled and scrubbed with water. The metal hydride is then decomposed into its elements e.g. H.sub.2 and a Group IV A aor V A metal when the cooled and scrubbed gas stream contacts a solid sorbent material having a minimum surface area of 10 square meters per gram in a gas-solids contacting zone at a temperature in the range of about 0.degree. C. to 350.degree. C., a pressure in the range of about 1 to 250 atmospheres, and a space velocity in the range of about 300 to 10,000 standard cubic feed per hour dry gas feed per cubic foot of solid sorbent material. The metallic portion of the decomposed hydride is deposited on the solid sorbent contacting material in the elemental form or as the sulfide or oxide. A stream of synthesis gas, reducing gas, or fuel gas, substantially free-from volatile metal hydrides is removed from the gas-solids contacting zone in admixture with the hydrogen produced in the decomposing step. Poisoning of downstream catalyst beds and clogging of heat exchanger tubes are thereby avoided. Valuable rare metals may be recovered from fossil fuels by the subject process.
Abstract:
A method for disposing of a halogenated organic material includes the steps of partially oxidizing the halogenated organic material, a hydrocarbonaceous material, and a nitrogen compound with a free-oxygen containing gas and optionally with a temperature moderator in a synthesis gas generator under partial oxidation conditions. The partial oxidation produces a synthesis gas containing, among others, hydrogen halide and ammonia. The synthesis gas is then contacted with a quench medium which dissolves the hydrogen halide into the quench medium. The hydrogen halide and quench medium can be disposed of by the addition of a base to form a readily disposed metal salt of the halide.
Abstract:
A process for the removal of slag and other residual solid material from a coal gasification process as a suspension in water free from noxious gases normally associated therewith wherein water is drawn off from the quench section of a coal gasifier with the slag into lock hopper and is displaced by introducing cold fresh water into the lower portion of the lock hopper displacing the sour water from an exit in the upper portion of the lock hopper back into the quench section of the coal gasification system. In an alternate embodiment, noxious gases are stripped from the quench water in the lock hopper with a stripping gas. Solid waste and clean or decontaminated water are discharged from the system without pollution of the environment.