Abstract:
An active material for a rechargeable lithium battery and a rechargeable battery, the active material including an active material core; and a thin film graphite layer on the core.
Abstract:
A crystalline carbon material with controlled interlayer spacing and a method of manufacturing the crystalline carbon material are disclosed. The crystalline carbon material has peaks of a (002) plane at 2θ=23°±5.0° and 2θ=26.5°±1.0° when X-ray diffraction is measured using a CuKα ray. The peak height at 2θ=23°±5.0° is higher than the one at 2θ=26.5°±1.0°.
Abstract:
Disclosed are a positive active material composition for an electrochemical device, a positive electrode, and an electrochemical device including the same. The positive active material composition includes: a carbon-based additive including a hydroxyl group (—OH) and an enol group (—C═C—OH) on the surface, having a peak area ratio (OH/C═COH) of a hydroxyl group peak area and an enol group peak area of an infrared spectroscopy (FT-IR) spectrum ranging from about 0.5 to about 10, having a specific surface area of about 50 m2/g to about 3000 m2/g, and having an oxygen-containing heterogeneous element in a content of less than about 15 wt %; a positive active material; a conductive material; and a binder.
Abstract:
A rechargeable battery that can have high energy density and high power density. The rechargeable battery includes: bipolar electrodes including a current collector, a sealing layer that is formed at the edge of the current collector, a first electrode active material layer that is inserted into a space in that is formed within the sealing layer, and a second electrode active material layer that is formed at the opposite side of the first electrode active material layer; and a separator that is disposed between the bipolar electrodes, wherein the sealing layer is bonded with the sealing layer of neighboring bipolar electrodes.
Abstract:
A method for producing a silicon oxide including the steps of supplying silicon atoms onto a substrate through an oxygen atmosphere to form a silicon oxide layer on the substrate, and separating the silicon oxide layer from the substrate and pulverizing the separated silicon oxide layer to obtain silicon oxide containing silicon and oxygen in predetermined proportions, and a negative electrode active material obtained by the production method.
Abstract:
A non-aqueous electrolyte secondary battery comprising: a positive electrode plate including an outer jacket comprising a sheet-shaped positive electrode current collector and a positive electrode active material layer formed on an inner surface of the outer jacket except for a peripheral portion thereof; a negative electrode plate including an outer jacket comprising a sheet-shaped negative electrode current collector and a negative electrode active material layer formed on an inner surface of the outer jacket except for a peripheral portion thereof; a separator layer comprising a polymer electrolyte interposed between the positive electrode active material layer and the negative electrode active material layer, wherein the peripheral portion of the positive electrode current collector and the peripheral portion of the negative electrode current collector are bonded together, with an insulating material interposed therebetween.
Abstract:
A composite particle for an electrode including an active material particle, carbon nanofibers bonded to the surface of the active material particle, and a catalyst element for promoting the growth of the carbon nanofibers, wherein the active material particle includes an electrochemically active phase. As the catalyst element, for example, Au, Ag, Pt, Ru, Ir, Cu, Fe, Co, Ni, Mo, Mn and the like are used. The composite particle for an electrode may be produced, for example, by means of a method which includes: a step of preparing an active material particle including a catalyst element for promoting the growth of carbon nanofibers at least in the surface layer of the active material particle; and a step of growing carbon nanofibers on the surface of the active material particle in an atmosphere including a raw material gas.
Abstract:
A non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, a separator interposed between the positive and negative electrodes, and a non-aqueous electrolyte. The positive and negative electrodes are wound together with the separator. The negative electrode includes composite particles and a binder. Each of the composite particles includes: a negative electrode active material including an element capable of being alloyed with lithium; carbon nanofibers that are grown from a surface of the negative electrode active material; and a catalyst element for promoting the growth of the carbon nanofibers. The binder comprises a polymer having at least one selected from the group consisting of an acrylic acid unit, an acrylic acid salt unit, an acrylic acid ester unit, a mathacrylic acid unit, a methacrylic acid salt unit, and a mathacrylic acid ester unit.
Abstract:
The positive active material for a rechargeable lithium battery includes a composite material of a microporous carbon-based material and a lithium composite compound and a carbon layer on the surface of the composite material.
Abstract:
Disclosed are a negative active material for a secondary lithium battery and a secondary lithium battery including the same. The negative active material for a secondary lithium battery includes an amorphous silicon-based compound represented by the following Chemical Formula 1. SiAxHy Chemical Formula 1 In Chemical Formula 1, A is at least one element selected from C, N, or a combination thereof, 0