Abstract:
The present invention relates to a magnetic particle-containing water dispersion wherein the magnetic particles have a primary particle diameter of 5 to 15 nm and an average secondary particle diameter of 10 to 60 nm, and the water dispersion has a zeta potential of not more than −20 mV when a pH value of the water dispersion lies within the range of 6 to 8, and further a surface of the respective magnetic particles is coated with a carboxyl group-containing polymer. The magnetic particle-containing water dispersion is produced by heating an aqueous solution in which the carboxyl group-containing polymer is dissolved, to a temperature of 90 to 100° C. in a nitrogen atmosphere; adding a solution of a ferrous (II) salt and a ferric (III) salt and an alkali solution to the aqueous solution to react with each other at the same temperature; adding ethanol to the solution to obtain a precipitate; and removing a supernatant liquid from the solution, and then dispersing the precipitate in water and subjecting the resulting dispersion to dialysis. The magnetic particle-containing water dispersion is useful as a magnetic particle-containing water dispersion capable of producing magnetic particle-containing drugs for diagnosis and therapies which can exhibit a uniform functionality, with a good reproducibility.
Abstract:
The present invention relates to a composite RF tag for transmitting and receiving information using an electromagnetic induction method, comprising a magnetic antenna mounted with an IC, and a resin layer formed around the magnetic antenna, wherein the magnetic antenna comprises a central core formed of a magnetic material and a coil-shaped electrode material disposed around the core. The RF tag according to the present invention comprises the magnetic antenna surrounded by the resin, and therefore can provide a composite magnetic RF tag which can minimize adverse influence by surrounding water or metals in view of maintenance of tools or parts to which the composite RF tag is mounted, and is free from occurrence of any failure or cracking.
Abstract:
An electromagnetic noise suppression sheet obtained by using combination of a conductive carbon and spinel ferrite particles having a cumulative 50% volume particle diameter of 1 to 10 μm, can exhibit an excellent transmission attenuation power ratio and a reduced return loss in a near electromagnetic field, and is suitable for high-density mounting. The electromagnetic noise suppression sheet of the present invention can be produced by the process of the present invention which includes the steps of applying a coating material in which the conductive carbon and the spinel ferrite particles having a cumulative 50% volume particle diameter of 1 to 10 μm are dispersed, to form a coating film having a thickness of 10 to 100 μm after dried, and subjecting the resulting coating film to thermoforming under pressure.
Abstract:
The present invention relates to Li—Ni-based composite oxide particles comprising Mn, and Co and/or Al, wherein Co and Al are uniformly dispersed within the particles, and Mn is present with a gradient of its concentration in a radial direction of the respective particles such that a concentration of Mn on a surface of the respective particles is higher than that at a central portion thereof. The Li—Ni-based composite oxide particles can be produced by allowing an oxide and a hydroxide comprising Mn to mechanically adhere to Li—Ni-based oxide comprising Co and/or Al; and then heat-treating the obtained material at a temperature of not lower than 400° C. and not higher than 1,000° C. The Li—Ni-based composite oxide particles of the present invention are improved in thermal stability and alkalinity.
Abstract:
A manganese oxide which has a calcium or/and magnesium content of 0.01 to 2.50 mol % based on the moles of manganese, a lithuim manganese complex oxide using the manganese oxide, and a cobalt-coated lithuim manganese complex oxide are disclosed. These provide a particularly high discharge capacity and are useful for the improvement of cycle characteristics of a secondary battery as an active material of a positive electrode for a secondary battery with a nonaqueous electrolyte.
Abstract:
Spindle-shaped goethite particles of the present invention contain Co of 8 to 45 atm %, calculated as Co, based on whole Fe, Al of 5 to 20 atm %, calculated as Al, based on whole Fe, and have an average major axial diameter of 0.05 to 0.18 nullm, each of said spindle-shaped goethite particles comprising a seed portion and a surface layer portion, the weight ratio of said seed portion to said surface layer portion being 30:70 to 80:20 and the relationship of the Co concentration of the seed portion with that of the hematite particle being 50 to 95:100 when the Co concentration of the hematite particle is 100, and said Al existing in said surface layer portion. Such spindle-shaped goethite particles are fine particles and exhibit a good particle size distribution. Spindle-shaped hematite particles obtained form the spindle-shaped goethite particles, can be prevented as highly as possible from causing destruction of particle shape when subjected to a heat-reduction step for producing magnetic spindle-shaped metal particles and magnetic spindle-shaped metal particles containing iron as a main component produced from the spindle-shaped goethite particles or the spindle-shaped hematite particles as a starting material, exhibit a high coercive force, an excellent particle coercive force distribution, a large saturation magnetization and an excellent oxidation stability, and are excellent in a squareness (Br/Bm) of the sheet due to a good dispersibility in a binder resin.
Abstract:
The present invention provides a precursor of positive electrode active substance particles for non-aqueous electrolyte secondary batteries which have a high discharge voltage and a high discharge capacity, hardly suffer from side reactions with an electrolyte solution, and are excellent in cycle characteristics, positive electrode active substance particles for non-aqueous electrolyte secondary batteries, and processes for producing these particles, and a non-aqueous electrolyte secondary battery. The present invention relates to positive electrode active substance particles for non-aqueous electrolyte secondary batteries having a spinel structure with a composition represented by the following chemical formula (1), in which the positive electrode active substance particles satisfy the following characteristic (A) and/or characteristic (B) when indexed with Fd-3m in X-ray diffraction thereof: (A) when indexed with Fd-3m in X-ray diffraction of the positive electrode active substance particles, a ratio of I(311) to I(111) [I(311)/I(111)] is in the range of 35 to 43%, and/or (B) when indexed with Fd-3m in X-ray diffraction of the positive electrode active substance particles, a gradient of a straight line determined by a least square method in a graph prepared by plotting sin θ in an abscissa thereof and B cos θ in an ordinate thereof wherein B is a full-width at half maximum with respect to each peak position 2θ (10 to 90°) is in the range of 3.0×10−4 to 20.0×10−4; and Li1+xMn2−y−zNiyMzO4 Chemical Formula (1) wherein x, y, z fall within the range of −0.05·x·0.15, 0.4·y·0.6 and 0·z·0.20, respectively; and M is at least one element selected from the group consisting of Mg, Al, Si, Ca, Ti, Co, Zn, Sb, Ba, W and Bi.
Abstract:
The present invention provides a precursor of positive electrode active substance particles for non-aqueous electrolyte secondary batteries which have a high discharge voltage and a high discharge capacity, hardly suffer from side reactions with an electrolyte solution, and are excellent in cycle characteristics, positive electrode active substance particles for non-aqueous electrolyte secondary batteries, and processes for producing these particles, and a non-aqueous electrolyte secondary battery. The present invention relates to positive electrode active substance particles for non-aqueous electrolyte secondary batteries having a spinel structure with a composition represented by the following chemical formula (1), in which the positive electrode active substance particles satisfy the following characteristic (A) and/or characteristic (B) when indexed with Fd-3m in X-ray diffraction thereof: (A) when indexed with Fd-3m in X-ray diffraction of the positive electrode active substance particles, a ratio of I(311) to I(111) [I(311)/I(111)] is in the range of 35 to 43%, and/or (B) when indexed with Fd-3m in X-ray diffraction of the positive electrode active substance particles, a gradient of a straight line determined by a least square method in a graph prepared by plotting sin θ in an abscissa thereof and B cos θ in an ordinate thereof wherein B is a full-width at half maximum with respect to each peak position 2θ (10 to 90°) is in the range of 3.0×10−4 to 20.0×10−4; and Li1+xMn2-y-zNiyMzO4 Chemical Formula (1) wherein x, y, z fall within the range of −0.05·x·0.15, 0.4·y·0.6 and 0·z·0.20, respectively; and M is at least one element selected from the group consisting of Mg, Al, Si, Ca, Ti, Co, Zn, Sb, Ba, W and Bi.
Abstract:
The present invention relates to a hydrocarbon-decomposing catalyst comprising magnesium, aluminum and nickel as constitutional elements, containing silicon in an amount of 0.001 to 20% by weight (calculated as Si) based on the weight of the catalyst, and having a nickel content of 0.1 to 40% by weight (calculated as metallic nickel) based on the weight of the catalyst; and a hydrocarbon-decomposing catalyst comprising a porous carrier and a catalytically active metal carried on the carrier, said porous carrier comprising magnesium and aluminum as constitutional elements and containing silicon in an amount of 0.001 to 20% by weight (calculated as Si) based on the weight of the catalyst, and said catalytically active metal comprising fine metallic nickel particles, a content of said fine metallic nickel particles being 0.1 to 40% by weight (calculated as metallic nickel) based on the weight of the catalyst. The hydrocarbon-decomposing catalyst of the present invention is less expensive, and can exhibit an excellent catalytic activity capable of decomposing C1 or more hydrocarbons, a good anti-coking property even under a less steam condition, a good effect of reducing an amount of ammonia by-produced even upon using nitrogen-containing hydrocarbon fuels, and a sufficient strength capable of preventing the catalyst from being crushed and broken even upon occurrence of coking inside thereof, and an excellent durability.
Abstract:
According to the present invention, there are provided lithium titanate particles which exhibit an excellent initial discharge capacity and an enhanced high-efficiency discharge capacity retention rate as an active substance for non-aqueous electrolyte secondary batteries and a process for producing the lithium titanate particles, and Mg-containing lithium titanate particles.