Abstract:
A super junction transistor includes a drain substrate, an epitaxial layer, wherein the epitaxial layer is disposed on the drain substrate, a plurality of gate structure units embedded on the surface of the epitaxial layer, a plurality of trenches disposed in the epitaxial layer between the drain substrate and the gate structure units, a buffer layer in direct contact with the inner surface of the trenches, a plurality of body diffusion regions with a first conductivity type adjacent to the outer surface of the trenches, wherein there is at least a PN junction on the interface between the body diffusion region and the epitaxial layer, and a doped source region, wherein the doped source region is disposed in the epitaxial layer and is adjacent to the gate structure unit.
Abstract:
A method for fabricating a power transistor includes: (a) forming a trench in a substrate with a first electrical type; (b) diffusing second electrical type carriers into the substrate from the trench such that the substrate is formed into a first part and a second part that is diffused with the second electrical type carriers and that adjoins the trench, the first and second parts being crystal lattice continuous to each other; (c) forming a filling portion in the trench, the filling portion adjoining the second part; (d) performing a carrier-implanting process in the second part and the filling portion; and (e) forming over the substrate a gate structure that has a dielectric layer and a conductive layer.
Abstract:
A method for forming a power device includes the following steps. An epitaxial layer is formed on a substrate. A pad layer and hard mask are formed on the epitaxial layer. A trench is etched into the hard mask, the pad layer, and the epitaxial layer. The hard mask is removed. A buffer layer is formed on the sidewall of the trench. The trench is then filled with a dopant source layer comprising plural dopants. A drive-in process is performed to diffuse the dopants into the epitaxial layer through the buffer layer, thereby forming a diffusion region around the trench.
Abstract:
An electronic compass, which uses an induction coil unit and action force generated from the earth's magnetic field to detect directions, is able to show data on a display panel. Since data on the display panel is reflected on the inclined plane ahead of the present invention, a driver driving on the road is able to look steadily at data reflected from this invention, so as to efficaciously reduce probability of traffic accidents due to observing data by lowering one's head. The induction coil unit described is easily understood compared with known techniques, thus the production cost is relatively low and this inexpensive invention can be popularly accepted on the market.
Abstract:
A process for creating metal pillar via structures, used to interconnect multilevel metallizations, has been developed. The process features the creation of a via hole, in a thin dielectric layer, exposing the top surface of an underlying first level metallization structure. The metal pillar via structure is next formed, contacting the first level metallization structure, exposed in the opened via hole in the thin dielectric layer. The spaces between the metal pillar via structures are filled with a composite dielectric material, featuring a spin on glass layer, which provides partial planarazation. The planarazation process is completed via a chemical mechanical polishing process, which also exposes the top surface of the metal pillar via structure, making the metal pillar via structure easily accessible for contact for subsequent, overlying metallization structures.
Abstract:
A process for creating metal pillar via structures, used to interconnect multilevel metallizations, has been developed. The process features the creation of a via hole, in a thin dielectric layer, exposing the top surface of an underlying first level metallization structure. The metal pillar via structure is next formed, contacting the first level metallization structure, exposed in the opened via hole in the thin dielectric layer. The spaces between the metal pillar via structures are filled with a composite dielectric material, featuring a spin on glass layer, which provides partial planarazation. The planarazation process is completed via a chemical mechanical polishing process, which also exposes the top surface of the metal pillar via structure, making the metal pillar via structure easily accessible for contact for subsequent, overlying metallization structures.
Abstract:
An LED lamp for car use can be mounted in a long strip-shaped installation position, comprises a case, a light-reflecting base, a light source series and a lens base. The case is mounted corresponding to the installation position and the case has an opening and a first fixing part mounted opposite to the opening for being connected securely to the light-reflecting base. The light-reflecting base has a plurality of reflectors. Each of the reflectors has a second fixing part for being connected securely to the light source series. The light source series has a plurality of first LED lights and a plurality of second LED lights. The lens base located at the opening wraps the opening. The LED lamp for car use of the present invention can be used as a fog light or a daytime running light, and save space for installation of lamps in a car.
Abstract:
A method for fabricating a power semiconductor device is provided. A substrate with a first conductivity type is prepared. A semiconductor layer with a second conductivity type is formed on the substrate. A hard mask pattern having at least an opening is formed on the semiconductor layer. A first trench etching is performed to form a first recess in the semiconductor layer via the opening. A first ion implantation is performed to vertically implant dopants into the bottom of the first recess via the opening, thereby forming a first doping region. A second trench etching is performed to etch through the first doping region, thereby forming a second recess.
Abstract:
The present invention provides a trench type power transistor device including a substrate, an epitaxial layer, a doped diffusion region, a doped source region, and a gate structure. The substrate, the doped diffusion region, and the doped source region have a first conductivity type, and the substrate has an active region and a termination region. The epitaxial layer is disposed on the substrate, and has a second conductivity type. The epitaxial layer has a through hole disposed in the active region. The doped diffusion region is disposed in the epitaxial layer at a side of the through hole, and is in contact with the substrate. The doped source region is disposed in the epitaxial layer disposed right on the doped diffusion region, and the gate structure is disposed in the through hole between the doped diffusion region and the doped source region.