Abstract:
This disclosure relates to viscoelastic damping materials and constructions which may demonstrate low temperature performance and adhesion and which may be used in making vibration damping composites. Viscoelastic damping materials and constructions may include polymers or copolymers of monomers according to formula I: CH2═CHR1—COOR2 [I] wherein R1 is H, CH3 or CH2CH3 and R2 is a branched alkyl group containing 12 to 32 carbon atoms.
Abstract:
Adhesives compositions and methods of preparing adhesive compositions are described. The methods generally comprise a) providing a syrup composition comprising i) a free-radically polymerizable solvent monomer; and ii) a solute (meth)acrylic copolymer; and b) radiation curing the syrup composition in the absence of an ionic photoacid generator. In one embodiment, the solute (meth)acrylic copolymer as provided or during curing comprises repeat units derived from at least one alkyl(meth)acrylate monomer, at least one ethylenically unsaturated monomer comprising an acid-functional group; and at least one (meth)acryloyl monomer comprising an epoxy-functional group; and the acid-functional groups crosslink with the epoxy-functional groups. In another embodiment, the solute (meth)acrylic copolymer comprising repeat units derived from at least one alkyl(meth)acrylate monomer and at least one ethylenically unsaturated monomer comprising an acid-functional group; and an epoxy resin, having on average greater than one polymerizable epoxy group per molecule, crosslinks the acid-functional groups.
Abstract:
Adhesive compositions including 20 wt. % to 80 wt. % of a polymer selected from the group consisting of a radial styrene-isoprene block copolymer, a radial styrene-butadiene block copolymer, and combinations thereof, and 3 wt. % to 80 wt. % of a liquid rubber having a molecular weight of 300 Daltons to 100,000 Daltons, where the liquid rubber is selected from the group consisting of an isoprene rubber, a butadiene rubber, and combinations thereof. Such adhesive compositions exhibit high cohesive integrity as well as high adhesion and peel properties.
Abstract:
Provided are crosslinkable compositions comprising a (meth)acrylate polymer, where the polymer has a glass transition temperature no greater than 30° C.; a crosslinking agent, the crosslinking agent comprising a photo-active Type II photoinitiator and a polymerizable group selected from the group consisting of (meth)acrylate, allyl, and combinations thereof; and a UV absorbing material represented by the structure (I) where each of X1, X2, X3, and X4 is independently a hydrogen atom, a hydrocarbyl group including 1 to 15 carbon atoms, preferably 12 carbon atoms, or a heterohydrocarbyl group including 1 to 15 carbon atoms, preferably 12 carbon atoms.
Abstract:
A composition is described comprising a styrene-isobutylene block copolymer; and at least one ethylenically unsaturated monomer. After curing the composition comprises polymerized units of the ethylenically unsaturated monomer. In some embodiments the ethylenically unsaturated groups are selected from (meth)acryl or vinyl ether. The composition is suitable for use as a (e.g. pressure sensitive) adhesive. Articles, methods of making an article, and methods of bonding are also described.
Abstract:
The present invention is an assembly layer for a flexible device. The assembly layer is derived from precursors that include about 0 to about 50 wt % C1-C9 alkyl(meth)acrylate, about 40 to about 99 wt % C10-C24 (meth)acrylate, about 0 to about 30 wt % hydroxyl (meth)acrylate, about 0 to about 10 wt % of a non-hydroxy functional polar monomer, and about 0 to about 5 wt % crosslinker.
Abstract:
A (meth)acrylate copolymer derived from a polymerizable composition containing a (meth)acrylate macromer, an adhesive composition that is a pressure-sensitive adhesive and that contains the (meth)acrylate copolymer, and an article containing the adhesive composition are provided. The articles may be, for example, an adhesive tape, an electronic device, or a flexible and/or foldable article. The articles advantageously can be used to in electronic devices that are foldable and/or flexible.
Abstract:
An optically clear pressure sensitive adhesive article is described herein that includes a pressure sensitive adhesive film disposed on a substrate. The pressure sensitive adhesive film includes an optically clear adhesive composition formed by polymerizing a mixture of monomers that includes at least one (C1-C18)alkyl (meth)acrylate monomer and at least one polar (meth)acrylate monomer, and surface-modified fumed silica disposed in the optically clear pressure sensitive adhesive composition. The pressure sensitive adhesive film has a haze value in a range of 0 to 5% and a visible light transmittance value of 85 to 100%. Methods for making an optically clear pressure sensitive adhesive article are also described.
Abstract:
In one embodiment, an adhesive composition is described comprising a polyisobutylene polymer component, a styrene-isobutylene block copolymer, and optionally a tackifier. The polyisobutylene polymer component comprises one or more polyisobutylene polymers. The polyisobutylene polymer component has an average weight average molecular weight ranging from 15,000 g/mole to 300,000 g/mole. The weight ratio of block copolymer to polyisobutylene polymer of the adhesive composition is greater than 2.2:1. In some embodiments, the adhesive composition is a pressure sensitive adhesive.
Abstract:
The present invention is an assembly layer for a flexible device. The assembly layer is derived from precursors that include an alkyl(meth)acrylate ester having 1 to 24 carbon atoms in the alkyl group and a free-radical generating initiator. Within a temperature range of between −30° C. to 90° C., the assembly layer has a shear storage modulus at a frequency of 1 Hz that does not exceed 2 MPa, a shear creep compliance (J) of at least 6×10″6 1/Pa measured at 5 seconds with an applied shear stress between 50 kPa and 500 kPa, and a strain recovery of at least 50% at at least one point of applied shear stress within the range of 5 kPa to 500 kPa within 1 minute after removing the applied shear stress. In a preferred embodiment, the flexible device is a flexible electronic display.