摘要:
An antifuse structure and methods of forming contacts within the antifuse structure. The antifuse structure includes a substrate having an overlying metal layer, a dielectric layer formed on an upper surface of the metal layer, and a contact formed of contact material within a contact via etched through the dielectric layer into the metal layer. The contact via includes a metal material at a bottom surface of the contact via and an untreated or partially treated metal precursor on top of the metal material.
摘要:
An antifuse structure and methods of forming contacts within the antifuse structure. The antifuse structure includes a substrate having an overlying metal layer, a dielectric layer formed on an upper surface of the metal layer, and a contact formed of contact material within a contact via etched through the dielectric layer into the metal layer. The contact via includes a metal material at a bottom surface of the contact via and an untreated or partially treated metal precursor on top of the metal material.
摘要:
A method of detecting low-probability defects in large transistor arrays (such as large arrays of SRAM cells), where the defects manifest themselves as asymmetrical leakage in a transistor (such as a pulldown nFET in an SRAM cell). These defects are detected by creating one or more test arrays, identical in all regards to the large transistor arrays up until the contact and metallization layers. Leakage is measured by applying an appropriate off-state voltage (e.g., 0V) by a common connection to all of the gates of the transistors in the test array, then measuring the aggregate drain/source leakage current, both forward and reverse (e.g., first grounded source and positively biased drain, then grounded drain and positively biased source) comparing the difference between the two leakage current measurements.
摘要:
A structure and method of forming an improved metal cap for interconnect structures is described. The method includes forming an interconnect feature in an upper portion of a first insulating layer; deposing a dielectric capping layer over the interconnect feature and the first insulating layer; depositing a second insulating layer over the dielectric capping layer; etching a portion of the second insulating layer to form a via opening, wherein the via opening exposes a portion of the interconnect feature; bombarding the portion of the interconnect feature for defining a gauging feature in a portion of the interconnect feature; etching the via gauging feature for forming an undercut area adjacent to the interconnect feature and the dielectric capping layer; depositing a noble metal layer, the noble metal layer filling the undercut area of the via gauging feature to form a metal cap; and depositing a metal layer over the metal cap.
摘要:
An interconnect structure having improved electromigration (EM) reliability is provided. The inventive interconnect structure avoids a circuit dead opening that is caused by EM failure by incorporating a EM preventing liner at least partially within a metal interconnect. In one embodiment, a “U-shaped” EM preventing liner is provided that abuts a diffusion barrier that separates conductive material from the dielectric material. In another embodiment, a space is located between the “U-shaped” EM preventing liner and the diffusion barrier. In yet another embodiment, a horizontal EM liner that abuts the diffusion barrier is provided. In yet a further embodiment, a space exists between the horizontal EM liner and the diffusion barrier.
摘要:
An interconnect structure having an incomplete via opening is processed to deepen a via opening and to expose a metal line. In case the interconnect structure comprises a metal pad or a blanket metal layer, the metal pad or the metal layer is removed selective to an underlying dielectric layer to expose the incomplete via opening. Another dielectric layer is formed within the incomplete via opening to compensated for differences in the total dielectric thickness above the metal line relative to an optimal dielectric stack. A photoresist is applied thereupon and patterned. An anisotropic etch process for formation of a normal via opening may be employed with no or minimal modification to form a proper via opening and to expose the metal line. A metal pad is formed upon the metal line so that electrical contact is provided between the metal pad and the metal line.
摘要:
The present invention provides a method of fabricating semiconductor device comprising at least one field effect transistor (FET) having source and drain (S/D) metal silicide layers with intrinsic tensile or compressive stress. First, a metal layer containing a silicide metal M is formed over S/D regions of a FET, followed by a first annealing step to form S/D metal silicide layers that comprise a metal silicide of a first phase (MSix). A silicon nitride layer is then formed over the FET, followed by a second annealing step. During the second annealing step, the metal silicide is converted from the first phase (MSix) into a second phase (MSiy) with x
摘要:
Contact via structures using a hybrid barrier layer, are disclosed. One contact via structure includes: an opening through a dielectric to a silicide region; a first layer in the opening in direct contact with the silicide region, wherein the first layer is selected from the group consisting of: titanium (Ti) and tungsten nitride (WN); at least one second layer over the first layer, the at least one second layer selected from the group consisting of: tantalum nitride (TaN), titanium nitride (TiN), tantalum (Ta), ruthenium (Ru), rhodium (Rh), platinum (Pt) and cobalt (Co); a seed layer for copper (Cu); and copper (Cu) filling a remaining portion of the opening.
摘要:
An interconnect structure in the back end of the line of an integrated circuit forms contacts between successive layers by removing material in the top surface of the lower interconnect in a cone-shaped aperture, the removal process extending through the liner of the upper aperture, and depositing a second liner extending down into the cone-shaped aperture, thereby increasing the mechanical strength of the contact, which then enhance the overall reliability of the integrated circuit.
摘要:
Methods and a structure are disclosed for providing stacking fault reduced epitaxially grown silicon for use in hybrid surface orientation structures. In one embodiment, a method includes depositing a silicon nitride liner over a silicon oxide liner in an opening, etching to remove the silicon oxide liner and silicon nitride liner on a lower surface of the opening, undercutting the silicon nitride liner adjacent to the lower surface, and epitaxially growing silicon in the opening. The silicon is substantially reduced of stacking faults because of the negative slope created by the undercut.