摘要:
Electronic apparatus and methods of forming the electronic apparatus include a tantalum silicon oxynitride film on a substrate for use in a variety of electronic systems. The tantalum silicon oxynitride film may be structured as one or more monolayers. The tantalum silicon oxynitride film may be formed using atomic layer deposition. Metal electrodes may be disposed on a dielectric containing a tantalum silicon oxynitride film.
摘要:
Electronic apparatus and methods of forming the electronic apparatus include a hafnium aluminum oxynitride film on a substrate for use in a variety of electronic systems. The hafnium aluminum oxynitride film may be structured as one or more monolayers. The hafnium aluminum oxynitride film may be formed using atomic layer deposition. Metal electrodes may be disposed on a dielectric containing a hafnium aluminum oxynitride film.
摘要:
Non-volatile memory devices and arrays are described that facilitate the use of band-gap engineered gate stacks with asymmetric tunnel barriers in floating gate memory cells in NOR or NAND memory architectures that allow for direct tunneling programming and erase with electrons and holes, while maintaining high charge blocking barriers and deep carrier trapping sites for good charge retention. The direct tunneling program and erase capability reduces damage to the gate stack and the crystal lattice from high energy carriers, reducing write fatigue and leakage issues and enhancing device lifespan. Memory cells of the present invention also allow multiple bit storage in a single memory cell, and allow for programming and erase with reduced voltages. A positive voltage erase process via hole tunneling is also provided.
摘要:
Electronic apparatus and methods of forming the electronic apparatus include a silicon oxynitride layer on a semiconductor device for use in a variety of electronic systems. The silicon oxynitride layer may be structured to control strain in a silicon channel of the semiconductor device to modify carrier mobility in the silicon channel, where the silicon channel is configured to conduct current under appropriate operating conditions of the semiconductor device.
摘要:
Non-volatile memory devices and arrays are described that facilitate the use of band-gap engineered gate stacks with asymmetric tunnel barriers in floating gate memory cells in NOR or NAND memory architectures that allow for direct tunneling programming and erase with electrons and holes, while maintaining high charge blocking barriers and deep carrier trapping sites for good charge retention. The direct tunneling program and erase capability reduces damage to the gate stack and the crystal lattice from high energy carriers, reducing write fatigue and leakage issues and enhancing device lifespan. Memory cells of the present invention also allow multiple bit storage in a single memory cell, and allow for programming and erase with reduced voltages. A positive voltage erase process via hole tunneling is also provided.
摘要:
A non-volatile memory cell uses a resonant tunnel barrier that has an amorphous silicon and/or amorphous germanium layer between two layers of either HfSiON or LaAlO3. A charge trapping layer is formed over the tunnel barrier. A high-k charge blocking layer is formed over the charge trapping layer. A control gate is formed over the charge blocking layer. Another embodiment forms a floating gate over the tunnel barrier that is comprised of two oxide layers with an amorphous layer of silicon and/or germanium between the oxide layers.
摘要:
The invention includes semiconductor constructions having a thin film stacked resistor in electrical connection with a source/drain region of a transistor device. The resistor includes first and second crystalline layers which may or may not differ from one another. One of the first and second crystalline layers comprises doped silicon/germanium, and the other comprises doped silicon. The transistor device and resistor can be part of an SOI construction formed over a conventional substrate (such as a monocrystalline silicon wafer) or a non-conventional substrate (such as one or more of glass, aluminum oxide, silicon dioxide, metal and plastic). The invention also includes processes of forming semiconductor constructions, and in particular aspects, includes processes of forming resistor constructions.
摘要:
According to an embodiment of a method for operating a nonvolatile memory device, one or more non-volatile memory cells in one or more arrays are written by applying a voltage across a dielectric to store charge on charge centers in the high K dielectric, and one or more non-volatile memory cells are erased by applying a voltage across the dielectric to tunnel electrons off of the charge centers. Applying a voltage across a dielectric includes enhancing a resulting electric field using an injector medium and a high K dielectric. Other aspects and embodiments are provided herein.
摘要:
A multiple layer tunnel insulator is fabricated between a substrate and a discrete trap layer. The properties of the multiple layers determines the volatility of the memory device. The composition of each layer and/or the quantity of layers is adjusted to fabricate either a DRAM device, a non-volatile memory device, or both simultaneously.
摘要:
One aspect of the present subject matter relates to a method for forming an interlayer dielectric (ILD). In various embodiments of the method, an insulator layer is formed, at least one trench is formed in the insulator layer, and a metal layer is formed in the at least one trench. After the metal layer is formed, voids are formed in the insulator layer. One aspect of the present subject matter relates to an integrated circuit. In various embodiments, the integrated circuit includes an insulator structure having a plurality of voids that have a maximum size, and a metal layer formed in the insulator structure. The maximum size of the voids is larger than the minimum photo dimension of the metal layer such that a maximum-sized void is capable of extending between a first and second metal line in the metal layer. Other aspects are provided herein.