Abstract:
The present disclosure relates generally to the field of medical devices and establishing fluid communication between body lumens and/or within a body vessel. In particular, the present disclosure relates to devices and methods for establishing drainage between apposed body lumens and/or within a body vessel.
Abstract:
Medical devices and methods of using medical devices are disclosed. An example tissue retraction device includes a first engagement member having a first end and a second end, a second engagement member having a first end and a second end, a first elastic member attached to the second end of the first engagement member, and a first alignment member having a first end, a second end and a lumen extending therethrough. Further, the tissue retraction device has a first length, the first alignment member has a second length, the first elastic member extends within the lumen of the first alignment member and the second length of the first alignment member is less than or equal to the first length of the tissue retraction device.
Abstract:
A device for treating a tissue opening includes a capsule extending longitudinally from a proximal end to a distal end and including a lumen extending therethrough; a pair of arms movably housed within the lumen of the capsule such that the pair of arms are movable between an open configuration and a closed configuration, the pair of arms being biased toward the open configuration such that when the pair of arms are moved distally with respect to the capsule, distal ends of the pair of arms are separated from one another to receive target tissue therebetween; a needle releasably connected to a first one of the pair of aims, the needle extending laterally inward toward a second one of the pair of arms and including a connecting structure extending along a portion thereof, the second one of the pair of arms including an opening located so that, when the pair of arms are moved to the closed configuration, the connecting structure of the needle engages the opening; and a suture extending from a portion of the needle proximally through the capsule.
Abstract:
A tissue closure device includes a first clip including a first longitudinal element extending along a longitudinal axis from a proximal end to a distal end and a first pair of arms extending laterally from the first longitudinal element, the first pair of arms movable between an open configuration in which free ends of the first pair of arms are separated from one another and a closed configuration in which the free ends of the first pair of arms extend toward one another, the first pair of arms being biased toward the closed configuration, and a sliding element extending from a proximal end to a distal end and longitudinally movable relative to the first clip so that when a portion of the sliding element is received between the first pair of arms, the first pair of arms is moved from the biased closed configuration to the open configuration.
Abstract:
Embodiments of the present disclosure include a medical device including, among other things, an elongated member having a proximal end, a distal end, and at least one channel. A distal portion of the at least one channel may be displaced relative to a longitudinal axis of the elongated.
Abstract:
A method for reducing mucus accumulation in an airway including disposing an implantable device within an airway, wherein the implantable device has a first end, a second end, and an inner surface defining a lumen extending from the first end to the second end; wherein at least a portion of the inner surface has a hydrophobic polymer coating thereon, wherein a polymer coating surface has dynamic water contact angles of 145 degrees or greater; and wherein the implantable device is constructed and arranged to maintain patency of the airway; wherein accumulation of mucus is reduced as compared to a similar implantable device without the hydrophobic portion of the inner surface. An implantable medical device having a superhydrophobic surface and a method of making an implantable medical device having a superhydrophobic surface are also provided. An implantable medical device having a micropatterned surface with enhanced adhesion to tissue, optionally in combination with other region(s) having a superhydrophobic surface and a method of making such a device. Methods and devices for prevention of bacterial adhesion to implanted medical devices.
Abstract:
Methods and devices for at least partially occluding an airway of a lung is disclosed. The method includes deploying a catheter into the airway such that a balloon at a distal end of the catheter is positioned proximate a tissue wall that defines the airway, and inflating the balloon to cause pressure to be applied on a portion of the tissue wall. The method may also include deflating the balloon to cause the portion of the tissue wall to be drawn radially inward to at least partially occlude the airway.
Abstract:
In one aspect, the present disclosure pertains to ultrasonic treatment devices that comprise: (a) a flexible elongate body having a proximal end and a distal end, the flexible elongate body being configured for insertion to a target site within a patient; (b) an effector assembly disposed at the distal end of the flexible elongate body, the effector assembly comprising a piezoelectric transducer and an end effector; and (c) flexible electrical conductors in electrical communication with the piezoelectric transducer, the flexible electrical conductors extending along a length of the flexible elongate body, wherein transference of electrical energy to mechanical motion takes place via the piezoelectric transducer at the target site. Other aspects of the present disclosure pertain to systems employing such ultrasonic treatment devices and methods of treatment using such ultrasonic treatment devices.
Abstract:
A multi-functional medical device including a sheath having a proximal end, a distal end, and a lumen extending between the proximal end and the distal end. The medical device further includes an end-effector slidably disposed within the lumen. A portion of the end-effector may be configured to transition between a collapsed state while in the lumen and an expanded state while out of the lumen. Further, the end-effector may include a tool configured to dissect tissue, and a retracting member having a plurality of legs disposed about the tool.