Abstract:
The present invention discloses an array substrate and a manufacturing method thereof, and a display device, and relates to the field of display technology, in order to reduce the leakage current of the TFT, improve the stability of the TFT, and enhance the display effect of the display device. The array substrate comprises: a transparent substrate, a TFT on the transparent substrate, a first passivation layer covering the TFT, a first transparent electrode on a surface of the first passivation layer, and a light blocking structure for preventing light transmission provided at a position, corresponding to a channel of the TFT, on a side of the TFT away from the transparent substrate.
Abstract:
Embodiments of the invention provide a fabricating method a thin film transistor, a thin film transistor and a display panel, so as to improve carrier mobility in the polycrystalline silicon. The fabricating method a thin film transistor comprises following M1, depositing an inducing layer on a substrate; M2, etching a recess in the inducing layer by an etching process, the recess having an edge with a prescribed shape; M3, depositing an amorphous silicon layer in the recess having an edge with a prescribed shape, and inducing the amorphous silicon layer to form a polycrystalline silicon layer by crystallization method, polycrystalline silicon grains in the polycrystalline silicon layer arranging in a direction vertical to the edge of the recess by the limitation of the edge of the recess, and the polycrystalline silicone layer and the inducing layer together forming a semiconductor layer; and M4, forming a gate insulating layer, a gate, a passivation layer and a source and a drain connecting with the semiconductor layer sequentially on the semiconductor layer.
Abstract:
The present invention discloses an array substrate, a fabricating method of thereof and a display device. The array substrate comprises a base substrate, and a pattern of a gate, a pattern of a gate insulating layer, a pattern of a pixel electrode, a pattern of an ohmic contact layer, a pattern of an active layer, and a pattern of source-drain electrodes formed on the base substrate. The pattern of the pixel electrode is positioned between the pattern of the gate insulating layer and the pattern of the ohmic contact layer. The technical solutions of the present disclosure can reduce one mask process, thus lowering fabrication cost and improving product yield.
Abstract:
A sensor and its fabrication method are provided. The sensor comprises: a base substrate, a group of gate lines and a group of data lines arranged as crossing each other, and a plurality of sensing elements arranged in an array and defined by the group of gate lines and the group of data lines, each sensing element comprising a Thin Film Transistor (TFT) device and a photodiode sensing device, wherein the photodiode sensor device comprises: a bias line disposed on the base substrate; a transparent electrode disposed on the bias line and being electrically contacted with the bias line; a photodiode disposed on the transparent electrode; and a receiving electrode disposed on the photodiode; the TFT device is located above the photodiode. When the sensor is functioning, light is directly transmitted onto the photodiode sensor device through the base substrate. In comparison with conventional technologies, the light loss is largely reduced and the light absorption usage ratio is improved.
Abstract:
A method for manufacturing a thin film transistor according to the present disclosure may include the following steps of: performing a two-step etching on an active layer such that part of the active layer is consistent with a source-drain electrode layer, and etching the active layer within a photoresist-removed-area to form an active layer tail; ashing a photoresist layer such that a contour of the photoresist layer is consistent with that of the source-drain electrode layer; further etching the source-drain electrode layer to form a source-drain electrode layer pattern including a source electrode and a drain electrode, and etching off a doped semiconductor layer between the source electrode and the drain electrode, and meanwhile etching off the active layer tail.
Abstract:
A method for fabricating a sensor, comprising: forming a pattern of a bias line on a base substrate by using a first patterning process; forming a pattern of a transparent electrode, a pattern of a photodiode, a pattern of a receive electrode, a pattern of a source electrode, a pattern of a drain electrode, a pattern of a data line and a pattern of an ohmic layer by using a second patterning process; forming a pattern of an active layer, a pattern of a first passivation layer, a pattern of a gate electrode and a pattern of a gate line by using a third patterning process. The above method reduces the number of used mask in the fabrication processes as well as the production cost and simplifies the production process, thereby significantly improves the production capacity and the yield rate.
Abstract:
A flat panel detector includes a photoelectric conversion layer and a pixel detecting element disposed under the photoelectric conversion layer. The pixel detecting element includes: a pixel electrode for receiving charges, a storage capacitor for storing the received charges, and a thin film transistor for controlling outputting of the stored charges. The storage capacitor includes a first electrode and a second electrode. The first electrode includes an upper electrode and a bottom electrode that are disposed opposite to each other and electrically connected. A second electrode is sandwiched between the upper electrode and the bottom electrode. It is insulated between the upper electrode and the second electrode and between the second electrode and the bottom electrode.
Abstract:
An embodiment of the invention discloses a manufacture method of a sensor comprising: preparing gate scanning lines on a substrate; depositing a gate insulating layer on the gate scanning lines; sequentially depositing a gate insulation thin film, an active layer thin film, an ohmic contact layer thin film, a first conducting layer thin film and a photoelectric conversion layer thin film, and after the depositing, processing a lamination structure of the thin films with a gray-tone mask plate to obtain switch devices and photoelectric sensing devices; and then sequentially preparing a first passivation layer, bias lines and a second passivation layer.
Abstract:
An etching time detection means and an etching time detection method for an etching device. The detection means comprises: a light wave emitter fixed on one substrate of the etching device, a light wave receiver fixed on another substrate and opposed to the light wave emitter, a detection system communicated with the light wave emitter and the light wave receiver for receiving light intensity signals and calculating etching time. With the detection means and the detection method, the automatical detection of etching time can be achieved and the deviation caused by visual observation can be effectively avoided.
Abstract:
A sample testing apparatus for characterizing at least one target molecule in a testing sample includes a substrate and at least one detection device over the substrate. Each detection device includes a plurality of electrodes, a plurality of data lines, and a probe. Each electrode is configured, upon reaction of the probe with one of the at least one target molecule, to sense an electrical signal, and then to transmit the electrical signal via the one data line. Each data line includes a first film layer and at least one other film layer disposed over the first film layer. The first film layer can be at a substantially same layer, and have a first composition substantially same, as the electrodes. One or more of the at least one other film layer can have a composition having a relatively lower electric resistance than the first composition.