Abstract:
A delamination resistant glass pharmaceutical container may include a glass body comprising a borosilicate glass having a Type 1 chemical durability according to USP . At least an inner surface of the glass body may have a delamination factor less than or equal to 10. A thermally stable coating may be positioned around at least a portion of the outer surface of the glass body. The thermally stable coating may be an outermost coating on the outer surface of the glass body and the outer surface of the glass body with the thermally stable coating has a coefficient of friction less than or equal to 0.7. The thermally stable coating comprising at least one of a metal nitride coating, a metal oxide coating, a metal sulfide coating, SiO2, diamond-like carbon, graphene, and a carbide coating.
Abstract:
Coated pharmaceutical packages are disclosed. The coated pharmaceutical packages may include a glass body formed from one of a borosilicate glass composition that meets Type 1 criteria according to USP or an alkali aluminosilicate glass having a Class HGA 1 hydrolytic resistance when tested according to the ISO 720-1985 testing standard. A low-friction coating may be positioned on at least a portion of the first surface of the glass body the low-friction coating may include a polymer and a coupling agent disposed between the polymer and the first surface of the glass body. A coefficient of friction of the portion of the coated pharmaceutical package with the low-friction coating is at least 20% less than a coefficient of friction of a surface of an uncoated pharmaceutical package formed from the same glass composition.
Abstract:
The glass containers described herein have at least two performance attributes selected from resistance to delamination, improved strength, and increased damage resistance. In one embodiment, a glass container may include a body having an inner surface, an outer surface and a wall thickness extending between the outer surface and the inner surface. A compressively stressed layer may extend from the outer surface of the body into the wall thickness. The compressively stressed layer may have a surface compressive stress greater than or equal to 150 MPa. A lubricous coating may be positioned around at least a portion of the outer surface of the body. The outer surface of the body with the lubricous coating may have a coefficient of friction less than or equal to 0.7.
Abstract:
Delamination resistant glass containers with heat-tolerant coatings are disclosed. In one embodiment, a glass container may include a glass body having an interior surface, an exterior surface and a wall thickness extending from the exterior surface to the interior surface. At least the interior surface of the glass body is delamination resistant. The glass container may further include a heat-tolerant coating positioned on at least a portion of the exterior surface of the glass body. The heat-tolerant coating may be thermally stable at temperatures greater than or equal to 260° C. for 30 minutes.
Abstract:
Coated pharmaceutical packages are disclosed. In embodiments, a coated pharmaceutical package includes a glass body comprising a first surface. A low-friction coating may be positioned on at least a portion of the first surface of the glass body. The low-friction coating may include a polymer chemical composition. A light transmission through the coated pharmaceutical package may be greater than or equal to about 55% of a light transmission through an uncoated pharmaceutical package for wavelengths from about 400 nm to about 700 nm. The low-friction coating may have a mass loss of less than about 5% of its mass when heated from a temperature of 150° C. to 350° C. at a ramp rate of about 10° C./minute.
Abstract:
A coated glass package comprising a glass body having a Type 1 chemical durability according to USP 660, at least a class A2 base resistance or better according to ISO 695, and at least a type HGB2 hydrolytic resistance or better according to ISO 719. A lubricous coating having a thickness of ≤100 microns may be positioned on at least a portion of the exterior surface of the glass body. The portion of the coated glass package with the lubricous coating comprises a coefficient of friction that is at least 20% less than an uncoated glass package and the coefficient of friction does not increase by more than 30% after undergoing a depyrogenation cycle. A horizontal compression strength of the coated glass package is at least 10% greater than an uncoated glass package and the horizontal compression strength is not reduced by more than 20% after undergoing the depyrogenation cycle.
Abstract:
Embodiments of the disclosure relate to a method of assembling a glass article. The glass article includes a display module and a glass sheet. In the method, an electronic ribbon connector is positioned in a vertical position. The electronic ribbon connector has a first end connected to the display module and a second free end. The display module is attached to the glass sheet. Adhesive is applied to the glass sheet around the display module. A frame is arranged over the glass sheet. The frame has a depending edge and a slot positioned adjacent to the depending edge. The frame is moved towards the glass sheet such that the second free end of the electronic ribbon connector extends through the slot and such that the depending edge of the frame contacts the adhesive.
Abstract:
A glass container including a body having a delamination factor less than or equal to 10 and at least one marking is described. The body has an inner surface, an outer surface, and a wall thickness extending between the outer surface and the inner surface. The marking is located within the wall thickness. In particular, the marking is a portion of the body having a refractive index that differs from a refractive index of an unmarked portion of the body. Methods of forming the marking within the body are also described.
Abstract:
Disclosed is a glass article. The glass article includes a cold-formed glass sheet having a first major surface and a second major surface. The second major surface is opposite to the first major surface. The first major surface has a curvature with a variable radius of curvature including a minimum radius of curvature at a vertex of the curvature. The curvature extends in a first direction from the vertex and in a second direction from the vertex. The first direction is opposite to the second direction. The variable radius of curvature continuously increases with increasing distance from the vertex in the first direction and in the second direction.
Abstract:
Embodiments of a method of cold-forming a glass article are disclosed. In one or more embodiments, the method includes bending a glass sheet over the chuck such that a first major surface of the glass sheets conforms to a bending surface of the chuck. In one or more embodiments, the method includes adhering a frame to the second major surface of the glass sheet such that at least one spacer is positioned between the glass sheet and the frame.