Abstract:
An integrated circuit may have two signal paths: an open-loop modulator (which may comprise a digital-input Class-D amplifier) and a closed-loop modulator (which may comprise an analog-input Class-D amplifier). A control subsystem may be capable of selecting either of the open-loop modulator or the closed-loop modulator as a selected path based on one or more characteristics (e.g., signal magnitude) of an input audio signal. For example, for higher-magnitude signals, the closed-loop modulator may be selected while the open-loop modulator may be selected for lower-magnitude signals. In some instances, when the open-loop modulator is selected as the selected path, the closed-loop modulator may power off, which may reduce power consumption. In addition, one or more techniques may be applied to reduce or eliminate user-perceptible audio artifacts caused by switching between the open-loop modulator and the closed-loop modulator, and vice versa.
Abstract:
Noise introduced in an output signal of a pulse-width modulator (PWM) may be reduced by changing the time duration that a switch is driving the output node. Because the power supplies coupled to the switches are the source of noise in the output signal of the PWM, the time duration that the power supplies are driving the output may be reduced to obtain a subsequent reduction in noise in the output signal. For example, when a small signal is desired to be output by the PWM, the switches may be operated for shorter time durations. Thus, the switches couple the noise sources to ground for a duration of a cycle to reduce contribution of noise to the output. But, when a larger signal is desired to be output by the PWM, the switches may be operated for longer time durations or the conventional time durations described above.
Abstract:
A method for producing an output voltage to a load may include, in a power stage comprising power converter having a power inductor, a plurality of switches arranged to sequentially operate in a plurality of switch configurations, and an output for producing the output voltage comprising a first output terminal and a second output terminal, controlling the linear amplifier to transfer electrical energy from the input source of the power stage to the load in accordance with one or more least significant bits of a digital input signal, and controlling the power converter in accordance with bits of the digital input signal other than the one or more least significant bits to sequentially apply switch configurations from the plurality of switch configurations to selectively activate or deactivate each of the plurality of switches in order to transfer electrical energy from the input source of the power stage to the load.
Abstract:
A personal audio device that detects speech provides for improved interaction with others. When speech is detected in a microphone output signal of a microphone that measures ambient audio sounds, the audio program being reproduced by the personal audio device may be altered, by attenuating, muting or interrupting the program material. The speech may be provided to a headset that reproduces the program material. The direction of the speech can be used to determine whether the speech is from a person other than the use of the personal audio device.
Abstract:
A switching power stage for producing an output voltage to a load may include a power converter and a controller. The power converter may include a power inductor and plurality of switches arranged to sequentially operate in a plurality of switch configurations. The controller may be configured to, based on a measured parameter associated with the switching power stage, select a selected operational mode of the power converter from a plurality of operational modes, and sequentially apply switch configurations from the plurality of switch configurations to selectively activate or deactivate each of the plurality of switches in order to transfer electrical energy from an input source of the power converter to the load in accordance with the selected operational mode.A switching power stage for producing an output voltage to a load may include a power converter and a controller. The power converter may include a power inductor and plurality of switches arranged to sequentially operate in a plurality of switch configurations. The controller may be configured to, based at least on an input signal to the switching power stage, determine the differential output voltage to be driven at the load, and based on the differential output voltage to be driven at the load, apply a switch configuration from the plurality of switch configurations to selectively activate or deactivate each of the plurality of switches in order to generate the differential output voltage.A method may include sequentially applying a plurality of switch configurations in a power converter to selectively activate or deactivate each of the plurality of switches in order operate the power converter as a differential output buck converter, such that: during a charging phase of the power converter, the power inductor is coupled between (i) one of a first terminal of a power source and a second terminal of the power source and (ii) one of a first terminal of the output load and a second terminal of the output load; during a transfer phase of the power converter, at least one of the plurality of switches is activated in order to couple the power inductor between the first terminal of the output load and a second terminal of the output load; and the output voltage is a differential voltage between the first and second terminal of the output load.
Abstract:
In accordance with embodiments of the present disclosure, a multichip circuit for processing audio signals having dynamic range enhancement information over two or more integrated circuits may include a host integrated circuit and a client integrated circuit. The host integrated circuit may be configured to determine a dynamic range enhancement gain for a digital audio input signal, process the digital audio input signal in accordance with the dynamic range enhancement gain, and transmit audio data based on the processed digital audio input signal. The client integrated circuit may be coupled to the host integrated circuit and may be configured to receive the audio data and wherein the client integrated circuit is provided with the dynamic range enhancement gain and the client integrated circuit is configured to process the audio data with the dynamic range enhancement gain.
Abstract:
The present invention provides a system and method encompassing a new metric and MATLAB tool box that phone makers may use to improve the design of the secondary path, in order to improve ANC performance. The metric measures how invertible the secondary path is and then evaluates ANC performance at a worst case scenario where P(z)=1 and W(z) becomes a complete predictor. The invention can be easily extended to a multi-channel ANC system.
Abstract:
A bipolar junction transistor (BJT) may be used in a power stage DC-to-DC converter, such as for LED-based light bulbs. The BJT may be switched on and off from a controller coupled to two terminals of the BJT. Through the two terminals, the control IC may dynamically adjust a reverse recovery time period of the BJT. The reverse recovery time period may be adjusted by changing an amount of base charge that accumulates on the BJT. Additional, the reverse recovery may be controlled through the use of a reverse base current source applied to the BJT after beginning switching off the BJT.
Abstract:
Based on transducer status input signals indicative of whether headphones housing respective transducers are engaged with ears of a listener, a processing circuit may determine whether the headphones are engaged with respective ears of the listener. Responsive to determining that at least one of the headphones is not engaged with its respective ear, the processing circuit may modify at least one of a first output signal to the first transducer and a second output signal to the second transducer such that at least one of the first output signal and the second output signal is different than such signal would be if the headphones were engaged with their respective ears.
Abstract:
In accordance with embodiments of the present disclosure, an adjustable equalization filter may have a response that generates an equalized source audio signal from a source audio signal to account for effects of changes in an electro-acoustical path of the source audio signal to a transducer. An equalizer coefficient control block may adapt the response of the adjustable equalization filter in response to changes in a response of a secondary path estimate filter for modeling the electro-acoustical path of a source audio signal through the transducer, wherein a response of the secondary path estimate filter is adapted in conformity with an error microphone signal indicative of the acoustic output of the transducer.