Abstract:
A DC offset removal method and apparatus for use with a receiver, such as a direct conversion receiver. The DC offset error can be upconverted to an intermediate frequency where it appears as a DC offset spurious signal. The DC offset spurious signal can be amplified and downconverted back to a DC signal. The DC signal can be used to determine an offset correction value that can be coupled to a signal path to substantially remove the DC offset error. An embodiment is disclosed that allows a single module to be used to remove the static and dynamic DC offset error components. Another embodiment includes separate portions for the removal of static and dynamic offset errors.
Abstract:
Methods and systems for providing satellite television service to a premises may comprise receiving satellite television signals utilizing a satellite dish, converting received satellite signals to internet protocol (IP) signals, and wirelessly communicating the IP signals into a premises to which the satellite dish corresponds. The IP signals may, for example, conform to a multimedia over cable alliance (MoCA) standard or a IEEE 802.11x standard. The wirelessly communicating may comprise magnetic coupling. The received satellite signals may, for example, be converted to IP signals utilizing an IP low-noise block downconverter (IP-LNB) which may comprise full-band capture receivers. The wireless communication of the IP signals may, for example, be within a wireless network of the dwelling or may be independent of a wireless network of the dwelling. The wirelessly communicated IP signals may be beam-formed and may be communicated wirelessly over one or more industrial, scientific, and medical (ISM) bands.
Abstract:
A radio integrated circuit includes, in part, an analog front end block, an analog-to-digital converter responsive to the analog-front end block, a digital signal processor responsive to the analog-to-digital converter and adapted to generate in-phase and quadrature signals, and a serial communication interface configured to receive and transmit the in-phase and quadrature signals. The serial communication interface supplies a gain control signal to the analog front end block when a switch disposed in the radio integrated circuit is in a first position. When the switch is in a second position, a gain control block disposed in the radio integrated circuit receives a gain control signal from the analog-to-digital converter and supplies the gain control signal to the analog front end block. The digital signal processor may be configured to interleave the in-phase and quadrature signals.
Abstract:
A first device of a multimedia over coax alliance (MoCA) network may grant a second device of the MoCA network permission to enter a power-saving state. While the second device is in the power-saving mode, the first device may grant bandwidth to the second device during one or more predetermined timeslots. The bandwidth may be granted without a corresponding reservation request from the second device. While the second device is in the power-saving state, it may track time utilizing a clock that is synchronized to the system time of the MoCA network, and transmit during one or more of the predetermined timeslots without first transmitting a corresponding reservation request. The second device may utilize a first modulation profile when not operating in the power-saving state, and utilize a second modulation profile when operating in the power-saving state.
Abstract:
One or more circuits may comprise at least one first-type analog-to-digital converter (ADC) and at least one second-type ADC. The circuit(s) may be operable to receive a plurality of signals, each of which may comprise a plurality of channels. The circuit(s) may be operable to digitize a selected one or more of the channels. Which, if any, of the selected channels are digitized via the at least one first-type ADC and which, if any, of the selected channels are digitized via the at least one second-type ADC, may be based on which of the plurality of channels are the selected channels and/or based on power consumption of the circuit(s). A bandwidth of each first-type ADC may be on the order of the bandwidth of one of the received signals. A bandwidth of each second-type ADC may be on the order of the bandwidth of one of the plurality of channels.
Abstract:
A dual conversion receiver architecture that converts a radio frequency signal to produce a programmable intermediate frequency whose channel bandwidth and frequency can be changed using variable low-pass filtering to accommodate multiple standards for television and other wireless standards. The dual conversion receiver uses a two stage frequency translation and continual DC offset removal. The dual conversion receiver can be completely implemented on an integrated circuit with no external adjustments.
Abstract:
Aspects of a method and apparatus for communicating electronic service guide information in a satellite television system are provided. A satellite communication system may receive a signal via an interface to a satellite dish, and receive data from a network via a second interface (e.g., an interface to a LAN or a WAN, such as the Internet). The satellite communication system may be operable to channelize the received satellite signal into a plurality of channels, wherein a first channel of the plurality of channels carries electronic service guide (ESG) data. The satellite communication system may select which of the plurality of channels to input to a demodulator based, at least in part, on whether ESG data is available via the second interface. A second channel carrying media data may be input to the demodulator while the ESG data is available via the second interface.
Abstract:
A satellite reception assembly may comprise a memory collocated with a receive module and a basestation module. The receive module may receive a satellite signal and recover data carried in the satellite signal. The data may be stored in the memory. The stored data may be transmitted to mobile devices via the basestation module. Which portion of the recovered data is store in the memory may be based on demand for particular data in the coverage area served by the basestation module. Which portion of the recovered data is stored in the memory may be based on information provided by a satellite subscriber, such as the subscriber's anticipated location at one or more future time intervals.
Abstract:
An automatic gain control loop disposed in a receiver is adapted to compensate for varying levels of out of band interference sources by adaptively controlling the gain distribution throughout the receive signal path. One or more intermediate received signal strength indicator (RSSI) detectors are used to determine a corresponding intermediate signal level. The output of each RSSI detector is coupled to an associated comparator that compares the intermediate RSSI value against a corresponding threshold. The take over point (TOP) for gain stages is adjusted based in part on the comparator output values. The TOP for each of a plurality of gain stages may be adjusted in discrete steps or continuously.
Abstract:
Methods and apparatus for power control in a communications device are described. Bonding of channels in a modem may be dynamically adjusted responsive to user activity or demand for bandwidth. Bonded channel configurations may be adjusted to single channel configurations for low power operation. Modem configuration may be dynamically adjusted so as to maintain only required synchronization and system information to facilitate rapid data transfer resumption upon demand.