摘要:
In a new process of making a DMOS transistor, the doping of the sloping side walls can be set independently from the doping of the floor region in a trench structure. Furthermore, different dopings can be established among the side walls. This is achieved especially by a sequence of implantation doping, etching to form the trench, formation of a scattering oxide protective layer on the side walls, and two-stage perpendicular and tilted final implantation doping. For DMOS transistors, this achieves high breakthrough voltages even with low turn-on resistances, and reduces the space requirement, in particular with regard to driver structures.
摘要:
A method for manufacturing a metal-semiconductor contact in semiconductor Components is disclosed. There is a relatively high risk of contamination in the course of metal depositions in prior-art methods. In the disclosed method, the actual metal -semiconductor or Schottky contact is produced only after the application of a protective layer system, as a result of which it is possible to use any metals, particularly platinum, without the risk of contamination.
摘要:
A method for producing deep trench structures in an STI structure of a semiconductor substrate is provided, with the following successive process steps: subsequent to a full-area filling of STI recesses introduced into a semiconductor substrate with a first filler material, a first surface of a semiconductor structure is subjected to a CMP process to level the applied filler material and produce the STI structure; the leveled STI structure thus produced is structured; using the structured, leveled STI structure as a hard mask, at least one deep trench is etched in the area of this STI structure to create the deep trench structures.
摘要:
A lateral DMOS transistor is disclosed that includes a first region of a first conductivity type, which is surrounded on the sides by a second region of a second conductivity type, whereby a boundary line between both regions has opposite straight sections and curved sections linking the straight sections, and with a first dielectric structure, which serves as a field region and is embedded in the first region and surrounds a subregion of the first region. Whereby the first distance between the first dielectric structure and the boundary line is greater along the straight sections than along the curved sections.
摘要:
Vertically insulated active semiconductor regions having different thicknesses in an SOI wafer, which has an insulating layer, is produced. On the wafer, first active semiconductor regions having a first thickness are arranged in a layer of active semiconductor material. The second active semiconductor regions having a relatively smaller thickness are produced by epitaxial growth proceeding from at least one seed opening in a trench structure. The second semiconductor regions are substantially completely dielectrically insulated, laterally and vertically, from the first semiconductor regions by oxide layers. The width of the seed opening can be defined by lithography.
摘要:
A semiconductor element such as a DMOS-transistor is fabricated in a semiconductor substrate. Wells of opposite conductivity are formed by implanting and then thermally diffusing respective well dopants into preferably spaced-apart areas in the substrate. At least one trench and active regions are formed in the substrate. The trench may be a shallow drift zone trench of a DMOS-transistor, and/or a deep isolation trench. The thermal diffusion of the well dopants includes at least one first diffusion step during a first high temperature drive before forming the trench, and at least one second diffusion step during a second high temperature drive after forming the trench. Dividing the thermal diffusion steps before and after the trench formation achieves an advantageous balance between reducing or avoiding lateral overlapping diffusion of neighboring wells and reducing or avoiding thermally induced defects along the trench boundaries.
摘要:
An SOI wafer including an active semiconductor material layer on an insulating layer is processed to form thereon first and second active semiconductor regions that respectively have different thicknesses and that are vertically and laterally insulated. In the process, a trench is etched into the SOI wafer, seed openings are formed in the bottom of the trench to reach the underlying active material layer, the trench is filled with epitaxially grown semiconductor material progressing from the seed openings, some of the epitaxially grown material is removed to form the second active regions, and oxide layers are provided so that the second active regions are laterally and vertically insulated from the first active regions formed by remaining portions of the active semiconductor material layer.
摘要:
Method for manufacturing a semiconductor array, in which a conductive substrate (100), a component region (400), and an insulation layer (200), isolating the component region (400) from the conductive substrate (100), are formed, a trench (700) is etched in the component region (400) as far as the insulation layer (200), then the trench (700) is etched further as far as the conductive substrate (100), the walls (701) of the trench (700) are formed with an insulation material (710), and an electrical conductor (750, 755, 760) is introduced into the trench (700) and connected conductively to the conductive substrate (100), wherein before the trench (700) is etched, a layer sequence comprising a first oxide layer (510), a polysilicon layer (520) on top of the first oxide layer (510), and a second oxide layer (530) on top of the polysilicon layer (520) is applied to the component region (400).
摘要:
By aligning the primary flat of a wafer with a (100) plane rather than a (110) plane, devices can be formed with primary currents flowing along the (100) plane. In this case, the device will intersect the (111) plane at approximately 54.7 degrees. This intersect angle significantly reduces stress propagation/relief along the (111) direction and consequently reduces defects as well as leakage and parasitic currents. The leakage current reduction is a direct consequence of the change in the dislocation length required to short the source-drain junction. By using this technique the leakage current is reduced by up to two orders of magnitude for an N-channel CMOS device.
摘要:
To form a semiconductor component having active regions separated from one another by trenches as isolation structures, a method involves forming a shallow trench in a semiconductor body, thereafter forming a deep trench within the shallow trench in the semiconductor body, and thereafter completely driving dopant atoms into the semiconductor body to form a well region doped with the dopant. The dopant may be previously introduced by implantation into a surface layer, and then the dopant is finally completely driven into the well region by thermally supported diffusion after forming the deep trench. The shallow and deep trenches together form a compound trench with stepped side walls. Two oppositely doped wells may be formed on opposite sides of the compound trench, which thus isolates the two wells from one another. Active regions may be formed in the two wells.