Abstract:
A system is provided for monitoring strain in a substrate using a strain sensor element within a fiber optic sensing cable. Accurate and rapid measurement of strain of remote substrates presents major technical challenges and is the focus of much of the description presented. However, systems, methods and devices provided by the present invention are not only capable of reliably measuring strain in real time, but are also capable of measuring other characteristics of a substrate such as its temperature, pressure and its acoustic characteristics. The system is configured such that a strain sensor element within a strain sensing zone detects substantially the true strain characteristics of the substrate. And while other sensing elements within the same fiber optic sensing cable may not be configured to detect substrate strain at all, these sensing elements may reliably measure the temperature and pressure at the surface of the substrate adjacent to the strain sensing zone.
Abstract:
A method of fabricating a microelectronic device structure including increased thermal dissipation capabilities. The structure including a three-dimensional (3D) integrated chip assembly that is flip chip bonded to a substrate. The chip assembly including a device substrate including an active device disposed thereon. A cap layer is physically bonded to the device substrate to at least partially define a hermetic seal about the active device. The microelectronic device structure provides a plurality of heat dissipation paths therethrough to dissipate heat generated therein.
Abstract:
A light emitting semiconductor (LES) device having desirable thermal performance characteristics is disclosed. The LES device includes an insulating substrate layer having a plurality of vias formed therein and at least one LES chip mounted on the insulating substrate layer, with each of the LES chips(s) including an active surface including a light emitting area configured to emit light therefrom and a back surface positioned on a top surface of the insulating substrate layer and including connection pads thereon. A conductor layer is positioned on a bottom surface of the insulating substrate layer and in the vias, the conductor layer in direct contact with the connection pads of the LES chip(s) so as to be electrically and thermally connected thereto. An encapsulant is positioned adjacent the top surface of the insulating substrate layer and surrounding at least part of the LES chip(s), the encapsulant comprising a light transmitting material.
Abstract:
The present approach relates to the fabrication and use of a probe array having multiple individual probes. In one embodiment, the probes of the probe array may be functionalized such that certain of the probes are suitable for electrical sensing (e.g., recording) or stimulation, non-electrical sensing or stimulation (e.g., chemical sensing and/or release of biomolecules when activated), or a combination of electrical and non-electrical sensing or stimulation.
Abstract:
An electronics package includes a support substrate, an electrical component having a first surface coupled to a first surface of the support substrate, and an insulating structure coupled to the first surface of the support substrate and sidewalls of the electrical component. The insulating structure has a sloped outer surface. A conductive layer encapsulates the electrical component and the sloped outer surface of the insulating structure. A first wiring layer is formed on a second surface of the support substrate. The first wiring layer is coupled to the conductive layer through at least one via in the support substrate.
Abstract:
A reconfigured semiconductor logic device includes a semiconductor logic device comprising an active surface having a plurality of input/output (I/O) pads formed thereon and a redistribution layer. The redistribution layer includes an insulating layer disposed on the active surface of the semiconductor logic device and a patterned conductive layer comprising a plurality of discrete terminal pads formed atop the insulating layer. The plurality of discrete terminal pads are electrically coupled to respective I/O pads of the plurality of I/O pads by conductive vias formed through the insulating layer. The plurality of discrete terminal pads are larger than the plurality of I/O pads.
Abstract:
A system and method for monitoring a subject are presented. The system includes a sensing device including at least one magnetic source to generate a magnetic field and an array of magnetic sensors disposed within the magnetic field. The sensor array obtains a plurality of magnetic field measurements at a plurality of locations along a vessel carrying a fluid including one or more magnetic particles. Further, the system includes a processing subsystem communicatively coupled to the sensing device, where the processing subsystem determines variations in the measurements caused by magnetization-relaxation of the magnetic particles based on a coupled model that defines behavior of the fluid in the varying magnetic field based on principles of magnetization-relaxation, bulk motion of the magnetic particles towards a determined gradient of the magnetic field, magnetostatics, and conservation of momentum. The processing subsystem estimates values of one or more desired parameters based on the determined variations.
Abstract:
A filter package and method of manufacturing thereof is disclosed. The filter device package includes a first dielectric layer having an acoustic wave filter device attached thereto, the acoustic wave filter device comprising an active area and I/O pads. The filter device package also includes an adhesive positioned between the first dielectric layer and the acoustic wave filter device to secure the layer to the device, vias formed through the first dielectric layer and the adhesive to the I/O pads of the acoustic wave filter device, and metal interconnects formed in the vias and mechanically and electrically coupled to the I/O pads of the acoustic wave filter device to form electrical interconnections thereto, wherein an air cavity is formed in the adhesive between the acoustic wave filter device and the first dielectric layer, in a location adjacent the active area of the acoustic wave filter device.
Abstract:
A reconfigured semiconductor logic device includes a semiconductor logic device comprising an active surface having a plurality of input/output (I/O) pads formed thereon and a redistribution layer. The redistribution layer includes an insulating layer disposed on the active surface of the semiconductor logic device and a patterned conductive layer comprising a plurality of discrete terminal pads formed atop the insulating layer. The plurality of discrete terminal pads are electrically coupled to respective I/O pads of the plurality of I/O pads by conductive vias formed through the insulating layer. The plurality of discrete terminal pads are larger than the plurality of I/O pads.
Abstract:
An electronics package includes an interconnect assembly comprising a first insulating substrate, a first wiring layer formed on a lower surface of the first insulating substrate, and at least one through hole extending through the first insulating substrate and the first wiring layer. The electronics package also includes an electrical component assembly comprising an electrical component having an active surface coupled to an upper surface of the first insulating substrate opposite the lower surface. The active surface of the electrical comprises at least one metallic contact pad. At least one conductive stud is coupled to the at least one metallic contact pad and is positioned within the at least one through hole. A conductive plug contacts the first wiring layer and extends into the at least one through hole to at least partially surround the at least one conductive stud.