Abstract:
A controller for controlling emission of an internal combustion engine, that is configured to: determine an aging parameter(s) of the engine over a period of time; control an operating parameter(s) of the engine, based on the aging parameter(s); and then maintain emissions from the engine at a substantially constant value, based on the controlling. Also method of controlling emissions of an engine comprises: over a time period, determining a change in operating hours of the engine; emissions of the engine; and/or quantity of a fuel being dispensed by a fuel nozzle; controlling an operating parameter(s) of the engine during the time period, based on the determining, thereby maintaining the emissions of the engine substantially at a constant level during the same time period. A system and non-transitory computer readable media for controlling emissions of an engine are also disclosed.
Abstract:
The method involves receiving a plurality of current operating parameters of an engine during operation of engine and determining at least one of a current substitution ratio and a current peak cylinder pressure based on the plurality of current operating parameters. The method also involves determining at least one of a target substitution ratio and a predefined peak cylinder pressure based on the plurality of current operating parameters and comparing at least one of the current substitution ratio with the target substitution ratio and the current peak cylinder pressure with the predefined peak cylinder pressure. The method also involves controlling a first power output from a plurality of engine cylinders and a second power output from an electric turbo-compounding system, based on the comparison of at least one of the current substitution ratio with the target substitution ratio and the current peak cylinder pressure with the predefined peak cylinder pressure.
Abstract:
Various methods and systems are provided for a combustion system of an engine. In one example, a combustion system comprises a piston crown bowl with a central apex, a combustion chamber operable at a compression ratio in a range of from about 13:1 to about 17:1, the combustion chamber formed at least partially by the piston crown bowl, and a fuel injector with a nozzle extending into a central portion of the combustion chamber that is operable to inject fuel directly into the combustion chamber, the nozzle defining a number of apertures that is in a range of from six to ten.
Abstract:
A method includes combusting air within a plurality of cylinders of an internal combustion engine by injecting a fuel into the plurality of cylinders. The method further includes expanding a first portion of an exhaust gas generated from the plurality of combustion cylinders via a turbine. The method further includes controlling at least one of feeding a second portion of the exhaust gas via an exhaust channel bypassing the turbine; and recirculating a third portion of the exhaust gas to the plurality of combustion cylinders via a recirculation channel, as a function of an intake manifold air temperature and pressure at which the engine is operated.
Abstract:
A rotating detonation combustion (RDC) system is provided. The RDC includes a first outer wall and a second outer wall each extended around a centerline axis, and a detonation chamber formed radially inward of the second outer wall. A fuel passage extended between the first outer wall and the second outer wall, the fuel passage including a first inlet opening proximate to the aft end through which a flow of fuel is received into the fuel passage. The flow of fuel is provided through the fuel passage from the aft end to the forward end of the RDC system and to the detonation chamber.
Abstract:
A system for controlling a hybrid propulsion system includes a computer programmed to obtain altitude and terrain information associated with a predetermined route for the hybrid propulsion system comprising a first energy source and a second energy source. The computer is also programmed to obtain current and forecast ambient weather information associated with the predetermined route of the hybrid propulsion system, determine a power requirement and a torque requirement of the hybrid propulsion system associated with the altitude and the terrain along the predetermined route of the hybrid propulsion system, generate a trip plan to optimize at least one of a plurality of performance parameters of the hybrid propulsion system as the hybrid propulsion system travels along the predetermined route, and preferentially select the first energy source and/or the second energy source based on the trip plan.
Abstract:
A rotating detonation combustion (RDC) system is provided. The RDC includes a first outer wall and a second outer wall each extended around a centerline axis, and a detonation chamber formed radially inward of the second outer wall. A fuel passage extended between the first outer wall and the second outer wall, the fuel passage including a first inlet opening proximate to the aft end through which a flow of fuel is received into the fuel passage. The flow of fuel is provided through the fuel passage from the aft end to the forward end of the RDC system and to the detonation chamber.
Abstract:
A fuel and gas mixing structure for an engine is provided. This mixing structure includes a body configured to be positioned between a fuel injector and a cylinder of an engine. The body defines an interior volume that is configured to receive gas from outside the body and to receive one or more streams of fuel from the fuel injector in the interior volume. The body also defines one or more mixture conduits configured to conduct plumes of the fuel and gas, while mixing, from the interior volume to one or more exit ports and therethrough to the cylinder.
Abstract:
A method for use with an internal combustion engine having both donor and non-donor cylinder groups includes: injecting a fuel in one, or both, of the groups; injecting a second fuel in both groups at a first substitution rate; recirculating an exhaust emission from the donor cylinder group to both groups; combusting a mixture of air, the first fuel, the second fuel and the exhaust emission in both cylinder groups; and lowering the substitution rate of the second fuel in one, or both, of the cylinder groups. Other methods of controlling an engine and a system are also disclosed.
Abstract:
A method includes receiving a plurality of signals from a plurality of sensors coupled to a dual fuel engine. The method further includes altering an actual speed of the dual fuel engine to obtain a predetermined air-fuel ratio in response to a changed operating condition of the dual fuel engine determined based on the plurality of signals, so as to maintain operation of the dual fuel engine between knock and misfire conditions.