Abstract:
A control system for an engine includes one or more processors configured to determine when a change in one or more of oxygen or fuel supplied to an engine. The one or more processors also are configured to, responsive to determining the change in oxygen and/or fuel supplied to an engine, direct one or more fuel injectors of the engine to begin injecting fuel into one or more cylinders of the engine during both a first fuel injection and a second fuel injection during each cycle of a multi-stroke engine cycle of the one or more cylinders.
Abstract:
Dual-fuel engine system includes cylinders in which the cylinders have an intake valve and an exhaust valve that control a flow of fluid into and out of a combustion chamber of the corresponding cylinder. The intake valve is configured to have an intake valve closure (IVC) timing. The dual-fuel engine system is configured to operate in a single-fuel mode and a dual-fuel mode. The combustion chamber and a piston are designed to provide a compression ratio. The dual-fuel engine system also includes one or more processors that are operably coupled to and configured to control operation of the first fuel injector. The compression ratio and the IVC timing are selected to achieve a target pre-combustion temperature. The target pre-combustion temperature permits the dual-fuel engine system to operate at a high substitution rate in the dual-fuel mode and at a sufficient fuel efficiency in the single-fuel mode.
Abstract:
A control system for an engine includes one or more processors configured to determine when a change in one or more of oxygen or fuel supplied to an engine. The one or more processors also are configured to, responsive to determining the change in oxygen and/or fuel supplied to an engine, direct one or more fuel injectors of the engine to begin injecting fuel into one or more cylinders of the engine during both a first fuel injection and a second fuel injection during each cycle of a multi-stroke engine cycle of the one or more cylinders.
Abstract:
A system includes an engine coupled with a primary shaft that drives a first electric generator for generating electrical power via a gear subsystem, The system also includes a turbocharger assembly having at least one gas turbine engine configured for driving the primary shaft and coupled in parallel with the engine. The turbocharger assembly includes multiple compressors configured to provide a flow of compressed fluid into both the engine and the at least one gas turbine engine and multiple turbines configured to utilize exhausts from both the engine and the one gas turbine for driving the primary shaft. Further, the system includes a controller configured to operate a plurality of valves for controlling optimal intake fluid pressure into the engine and the turbocharger assembly and fuel injections into the engine and the at least one gas turbine engine.
Abstract:
A method includes combusting air within a plurality of cylinders of an internal combustion engine by injecting a fuel into the plurality of cylinders. The method further includes expanding a first portion of an exhaust gas generated from the plurality of combustion cylinders via a turbine. The method further includes controlling at least one of feeding a second portion of the exhaust gas via an exhaust channel bypassing the turbine; and recirculating a third portion of the exhaust gas to the plurality of combustion cylinders via a recirculation channel, as a function of an intake manifold air temperature and pressure at which the engine is operated.
Abstract:
A method of operating an internal combustion engine is provided. The method includes combusting a mixture of fresh air and fuel within multiple cylinders. The method also includes directing a first portion of exhaust gases into a first-stage turbine and a second-stage turbine of a turbocharger for expanding the exhaust gases, directing a second portion of exhaust gases from the exhaust manifold via an exhaust channel bypassing the first-stage turbine and recirculating a third portion of exhaust gases into an intake manifold after mixing with fresh air. The method includes controlling at least one of: reducing a normal engine speed at each engine power setting while maintaining constant engine power level by increasing a fuel injection per cycle; concurrently increasing a flow rate of the third portion of exhaust gas during recirculation; and advancing a fuel injection timing for reducing emission levels that meets Tier 4 requirements.
Abstract:
Various methods and systems are provided for adjusting an air-fuel ratio for combustion in an engine. In one embodiment, a method for an engine (e.g., a method for controlling an engine system) comprises responding to a sensed change in a load on the engine, or indications of engine knock or misfire, by one or more of: altering a speed of the engine, adjusting a fueling flow rate into at least one cylinder of the engine, and adjusting a position of a valve in a bypass passage configured to direct compressed intake air away from cylinders of the engine to obtain a determined air-fuel ratio; and thereby maintaining an air-fuel ratio in a determined range.
Abstract:
Fuel injector wear compensation methodologies for use with internal combustion engines that alter the injection schedule over the life of the fuel injector(s) by using methods that conduct a primary injection of fuel in the engine (primary fuel event), per an injection schedule within an engine cycle; compare a measured engine parameter(s) to a reference value(s); and then alter the injection schedule applied to the engine, based on the comparing. Another method comprises: during injection events, inject a first fuel in a combustion chamber of the engine; measure an engine parameter(s) of the engine during operation; compare the engine parameter(s) to a reference value(s); add a post injection event of a second fuel during the injection events, based on the comparison. The methods can be applied with single or dual fuels.
Abstract:
A method of operating an internal combustion engine is provided. The method includes combusting a mixture of fresh air and fuel within multiple cylinders. The method also includes directing a first portion of exhaust gases into a first-stage turbine and a second-stage turbine of a turbocharger for expanding the exhaust gases, directing a second portion of exhaust gases from the exhaust manifold via an exhaust channel bypassing the first-stage turbine and recirculating a third portion of exhaust gases into an intake manifold after mixing with fresh air. The method includes controlling at least one of: reducing a normal engine speed at each engine power setting while maintaining constant engine power level by increasing a fuel injection per cycle; concurrently increasing a flow rate of the third portion of exhaust gas during recirculation; and advancing a fuel injection timing for reducing emission levels that meets Tier 4 requirements.
Abstract:
A piston crown for a combustion system is disclosed. The piston crown includes a piston bowl having a circumferential recess and a plurality of first recesses arranged spaced apart from each other along a circumferential direction. The circumferential recess is disposed proximate to a circumference of the piston crown. Each recess of the plurality of the first recesses extends between a center of the piston crown and the circumferential recess, and a width and a depth of each recess of the plurality of first recesses are extended along a radial direction for an entire length of each recess of the plurality of first recesses.