Abstract:
One method disclosed includes, among other things, forming a gate structure above an active region of a semiconductor substrate, performing an epitaxial deposition process to form an epi semiconductor material on the active region in the source/drain region of the device, performing an etching process on the epi semiconductor material to remove a portion of the epi semiconductor material so as to define at least one epi recess in the epi semiconductor material, forming a metal silicide layer on the upper surface of the epi semiconductor material and in the at least one epi recess in the epi semiconductor material, and forming a conductive structure that is conductively coupled to the metal silicide layer.
Abstract:
We report a semiconductor device, containing a semiconductor substrate; an isolation feature on the substrate; a plurality of gates on the isolation feature, wherein each gate comprises a gate electrode and a high-k dielectric layer disposed between the gate electrode and the isolation feature and disposed on and in contact with at least one side of the gate electrode; and a fill metal between the plurality of gates on the isolation feature. We also report methods of forming such a device, and a system for manufacturing such a device.
Abstract:
A device is disclosed that includes an active layer, a gate structure positioned above a channel region of the active layer and a first sidewall spacer positioned adjacent the gate structure. The device also includes a gate cap layer positioned above the gate structure and an upper spacer that contacts sidewall surfaces of the gate cap layer, a portion of an upper surface of the gate structure and an inner surface of the first sidewall spacer.
Abstract:
A method includes forming an active layer, forming a gate structure above a channel region of the active layer, forming a sidewall spacer adjacent the gate structure, forming a first dielectric layer adjacent the sidewall spacer, recessing the gate structure to define a gate cavity, forming an inner spacer in the gate cavity, forming a cap layer in the gate cavity, recessing the first dielectric layer and the sidewall spacer to expose sidewall surfaces of the cap layer, removing the inner spacer to define a first spacer cavity, forming an upper spacer in the spacer cavity and contacting sidewall surfaces of the cap layer, forming a second dielectric layer above the upper spacer and the cap layer, and forming a first contact structure at least partially embedded in the second dielectric layer and contacting a surface of the upper spacer.
Abstract:
A method of manufacturing a semiconductor device is provided including forming raised source and drain regions on a semiconductor layer, forming a first insulating layer over the semiconductor layer, forming a first contact to one of the source and drain regions in the first insulating layer, forming a second insulating layer over the first contact, forming a trench in the second insulating layer to expose the first contact, removing a portion of the first contact below the trench, thereby forming a recessed surface of the first contact, removing a portion of the first insulating layer, thereby forming a recess in the trench and exposing a portion of a sidewall of the first contact below the recessed surface of the first contact, and filling the trench and the recess formed in the trench with a contact material to form a second contact in contact with the first contact.
Abstract:
Gate isolation methods and structures for a FinFET device leverage the definition and formation of a gate cut opening within a sacrificial gate layer prior to patterning the sacrificial gate layer to form a sacrificial gate. The gate cut opening formed in the sacrificial gate layer is filled with a sacrificial isolation layer. After forming source/drain junctions over source/drain regions of a fin, the sacrificial isolation layer is replaced with an isolation layer, and the sacrificial gate is replaced with a functional gate.
Abstract:
A method includes forming a plurality of fins above a substrate. A first placeholder gate electrode is formed above the plurality of fins. The first placeholder gate electrode includes a placeholder material. A first sacrificial gate cut structure of a sacrificial material different than the placeholder material embedded in the first placeholder gate electrode is formed. A portion of the first placeholder gate electrode positioned above the first sacrificial gate cut structure is removed, exposing the first sacrificial gate cut structure. The first sacrificial gate cut structure is removed to define a gate cut cavity extending vertically through the first placeholder gate electrode. A dielectric material is formed in the gate cut cavity to define a gate cut structure. The first placeholder gate electrode is removed to define a first gate cavity segmented by the gate cut structure. A first replacement gate structure is formed in the first gate cavity.
Abstract:
A first vertical field effect transistor (VFET) and a second VFET are formed on a substrate. The VFETs are parallel and adjacent to one another, and each comprises: a fin-shaped semiconductor; a lower source/drain (S/D) element; an upper S/D element; and a gate conductor. A portion of a gate conductor of the second VFET that is positioned over a lower S/D element of the second VFET is removed to leave a trench. An isolation spacer is formed to contact the gate conductor of the second VFET in a first portion of the trench. A lower S/D contact of the second VFET is formed on the lower S/D element of the second VFET in a second portion of the trench, a lower S/D contact of the first VFET is formed to a lower S/D element of the first VFET, and contacts are formed.
Abstract:
Disclosed are methods of forming an integrated circuit (IC) structure with self-aligned middle of the line (MOL) contacts and the resulting IC structure. In the methods, different, selectively etchable, dielectric materials are used above the gate level for: a dielectric cap above a gate; a dielectric spacer above a gate sidewall spacer and laterally surrounding the dielectric cap; and a stack of dielectric layer(s) that covers the dielectric cap, the dielectric spacer, and metal plugs positioned laterally adjacent to the dielectric spacer and above source/drain regions. Due to the different dielectric materials, subsequently formed gate and source/drain contacts are self-aligned in two dimensions to provide protection against the occurrence of opens between wires and/or vias in the first BEOL metal level and the contacts and to further provide protection against the occurrence of shorts between the gate contact and any metal plugs and between the source/drain contacts and the gate.
Abstract:
Device structures and fabrication methods for a field-effect transistor. A first dielectric spacer adjacent to a sidewall of a gate placeholder structure. A contact placeholder structure is formed adjacent to the first dielectric spacer such that the first dielectric spacer is arranged laterally between the gate placeholder structure and the contact placeholder structure. The contact placeholder structure and the first dielectric spacer are recessed to open a space over the contact placeholder structure and the first dielectric spacer. A second dielectric spacer is formed in the space adjacent to the sidewall of the gate placeholder structure and over the first dielectric spacer.