Abstract:
Systems and methods are described for interactively, graphically displaying and reporting performance information to a user of an HVAC system controlled by a self-programming network-connected thermostat. The information is made on a remote display device such as a smartphone, tablet computer or other computer, and includes a graphical daily or monthly summary each of several days or months respectively. In response to a user selection of a day, detailed performance information is graphically displayed that can include an indication of HVAC activity on a timeline, the number of hours of HVAC activity, as well as one or more symbols on a timeline indicating setpoint changes, and when a setpoint was changed due to non-occupancy.
Abstract:
Various utility portals that enable utility companies to manage demand-response events are disclosed. The disclosed utility portals include several different options for enabling utility companies to communicate information to and received information from an energy management system. The energy management system can host the portal and can carry out a demand response event via intelligent, network-connected devices based on information provided by the utility company.
Abstract:
The current application is directed to intelligent controllers that continuously, periodically, or intermittently monitor progress towards one or more control goals under one or more constraints in order to achieve control that satisfies potentially conflicting goals. An intelligent controller may alter aspects of control, dynamically, while the control is being carried out, in order to ensure that goals are obtained and a balance is achieved between potentially conflicting goals. The intelligent controller uses various types of information to determine an initial control strategy as well as to dynamically adjust the control strategy as the control is being carried out.
Abstract:
Methods for controlling temperature in a conditioned enclosure such as a dwelling are described that include an “auto-away” and/or “auto-arrival” feature for detecting unexpected absences which provide opportunities for significant energy savings through automatic adjustment of the setpoint temperature. According to some preferred embodiments, when no occupancy has been detected for a minimum time interval, an “auto-away” feature triggers a changes of the state of the enclosure, and the actual operating setpoint temperature is changed to a predetermined energy-saving away-state temperature, regardless of the setpoint temperature indicated by the normal thermostat schedule. The purpose of the “auto away” feature is to avoid unnecessary heating or cooling when there are no occupants present to actually experience or enjoy the comfort settings of the schedule, thereby saving energy.
Abstract:
A thermostat and a method include using occupancy sensors, temperature sensors, and humidity sensors to control activation of a cooling function of an HVAC system to dehumidify an enclosure. During times when the enclosure is occupied, the cooling function is activated when the humidity exceeds a first threshold humidity, and continues until the humidity drops below a second threshold humidity or the temperature drops below a first threshold temperature. During times when the enclosure is unoccupied, the cooling function is activated when the humidity exceeds a third threshold humidity, and continues until the humidity drops below a fourth threshold humidity or the temperature drops below a second threshold temperature.
Abstract:
The current application is directed to an intelligent-thermostat-controlled environmental-conditioning system in which computational tasks and subcomponents with associated intelligent-thermostat functionalities are distributed to one or more of concealed and visible portions of one or more intelligent thermostats and, in certain implementations, to one or more intermediate boxes. The intelligent thermostats are interconnected to intermediate boxes by wired and/or wireless interfaces and intelligent thermostats intercommunicate with one another by wireless communications. wireless communications include communications through a local router and an ISP, 3G and 4G wireless communications through a mobile service provider. Components of the intelligent-thermostat-controlled environmental-conditioning system may also be connected by wireless communications to remote computing facilities.
Abstract:
Various embodiments of hazard detectors are presented. A hazard sensor may be present that detects the presence of a hazardous condition. A light sensor may be present that detects an ambient brightness level. A motion sensor may be present that detects motion of a user. A light may be present that is capable of outputting light. A processing system may receive an indication of the ambient brightness level in the ambient environment of the hazard detector from the light sensor. The processing system may determine that the ambient brightness level is less than a threshold brightness. The processing system may receive information indicative of the user moving in the ambient environment of the hazard detector. The processing system may cause the light to illuminate based on the ambient brightness level being below the threshold brightness and the user moving in the ambient environment of the hazard detector.
Abstract:
Apparatus, systems, methods, and related computer program products for managing demand-response programs and events. The systems disclosed include an energy management system in operation with an intelligent, network-connected thermostat located at a structure. The thermostat acquires various information about the residence, such as a thermal retention characteristic of the residence, a capacity of an HVAC associated with the residence to cool or heat the residence, a likelihood of the residence being occupied, a forecasted weather, a real-time weather, and a real-time occupancy. Such information is used to manage the energy consumption of the structure during a demand-response event.
Abstract:
Hazard detection systems and methods according to embodiments described herein are operative to enable a user to interface with the hazard detection system by performing a touchless gesture. The touchless gesture can be performed in a vicinity of the hazard detection system without requiring physical access to the hazard detection system. This enables the user to interact with the hazard detection system even if it is out of reach. The hazard detection system can detect gestures and perform an appropriate action responsive to the detected gesture. In one embodiment, the hazard detection system can silence its audible alarm or pre-emptively turn off its audible alarm in response to a detected gesture. Gestures can be detected by processing sensor data to determine whether periodic shapes are detected.
Abstract:
Systems and methods for using multi-criteria state machines to manage alarming states and pre-alarming states of a hazard detection system are described herein. The multi-criteria state machines can include one or more sensor state machines that can control the alarming states and one or more system state machines that can control the pre-alarming states. Each state machine can transition among any one of its states based on sensor data values, hush events, and transition conditions. The transition conditions can define how a state machine transitions from one state to another. The hazard detection system can use a dual processor arrangement to execute the multi-criteria state machines according to various embodiments. The dual processor arrangement can enable the hazard detection system to manage the alarming and pre-alarming states in a manner that promotes minimal power usage while simultaneously promoting reliability in hazard detection and alarming functionality.