摘要:
Exemplary method, apparatus and arrangement can be provided for obtaining information associated with a sample such as a portion of an anatomical structure. The information can be generated using first data, which can be based on a signal obtained from a location on the sample, and second data, where the second data can be obtained by combining a second signal received from the sample with a third reference signal. An image of a portion of the sample can also be generated based on the information. For example, the first data can be associated with spectral encoding microscopy data, and the second data can be associated with optical coherence tomography data.
摘要:
A method of imaging at least a part of an object. The method comprises splitting electro-magnetic radiation to first and second portions, propagating the first and second portions, spectrally dispersing the first portion toward the part and the second portion toward a reference element, combining between reflections of the spectrally dispersed first and second portions to produce an interference signal, capturing an image of the part from the interference, and adjusting at least one of a tilt of said image plane and a curvature of the image by changing a deviation between the phase of at least one spectral component of the first portion and the phase of at least one spectral component of the second portion.
摘要:
Method, apparatus and arrangement according an exemplary embodiment of the present invention can be provided for obtaining information associated with a sample such as a portion of an anatomical structure. The information can be generated using first data, which can be based on a signal obtained from a location on the sample, and second data, where the second data can be obtained by combining a second signal received from the sample with a third reference signal. An image of a portion of the sample can also be generated based on the information. For example, the first data can be associated with spectral encoding microscopy data, and the second data can be associated with optical coherence tomography data.
摘要:
Systems, arrangements and methods for obtaining three-dimensional imaging data are provided. For example, a broadband light source can provide a particular radiation. A first electro-magnetic radiation can be focused and diffracted, and then provided to at least one sample to generate a spectrally-encoded line. A second electro-magnetic radiation may be provided to a reference, which may include a double-pass rapidly-scanning optical delay, where the first and second electro-magnetic radiations can be based on the particular radiation. An interference between a third electro-magnetic radiation (associated with the first electro-magnetic radiation) and a fourth electro-magnetic radiation (associated with the second electro-magnetic radiation) can be detected. The spectrally-encoded line may be scanned over the sample in a direction approximately perpendicular to the line. Image data containing three-dimensional information can then be obtained based on the interference. The exemplary imaging methods and systems can be used in a small fiber optic or endoscopic probe.
摘要:
An adaptive pulse compressor is described, especially for use with ultrashort pulses, wherein the input pulses are modified in an iterative fashion, according to a feedback signal obtained from measurement of the output pulses. The feedback signal is programmed, by means of a programmable spatial light modulator, to allow for independent control of the individual spectral components of the incoming pulses, such that almost arbitrary phase functions can be realized to accomplish efficient compression. One of the main disadvantages associated with prior art pulse compressors, namely, the need for characterization of the uncompressed pulses, is thus eliminated. The compressor is thus capable of handling completely uncharacterized or partially characterized input pulses, or pulses from time varying sources.
摘要:
A method of manipulating a living cell is disclosed. The method comprises, directing a pulsed optical field to at least one conductive nanoparticle present in the vicinity of the cell, so as to generate cavitations at or near the conductive nanoparticle at sufficient amount to effect at least one cell modification selected from the group consisting of cell-damage and cell-fusion.