Abstract:
A magnetometer comprising a resonating structure which is naturally resonant in at least three resonant modes, a resonant frequency of the three modes being sufficiently separated to allow of detection of same, the resonating structure having two sense electrodes disposed on opposing major surfaces of the resonating structure and having a conductive path formed as a loop, the loop being disposed near or at edges of the resonating structure and the two sense electrodes being formed inwardly of the edges of the resonating structure and also inwardly of the loop.
Abstract:
A piezoelectric quartz shear-mode resonator includes plasma etched quartz tethers, each including a mount. The tethers are for mounting the resonator to a semiconductor substrate for the purpose of isolating the thermally-induced stress from the mounts from the active resonating region, wherein the quartz tethers have rounded corners.
Abstract:
A resonator assembly includes a semiconductor substrate; a resonator gyroscope, the resonator gyroscope including a first resonator formed in a layer of a first material; and an oscillator on the semiconductor substrate, the oscillator including a second resonator formed of a second material. The second resonator is disposed in a cavity, the cavity comprising a first recess in the layer of a first material with the edges of the first recess being attached to the substrate, or the cavity comprising a second recess in the substrate and the edges of the second recess being attached to the layer of a first material.
Abstract:
A method for fabricating a gate structure for a field effect transistor having a buffer layer on a substrate, a channel layer and a barrier layer over the channel layer includes forming a gate of a first dielectric, forming first sidewalls of a second dielectric on either side and adjacent to the gate, selectively etching into the buffer layer to form a mesa for the field effect transistor, depositing a dielectric layer over the mesa, planarizing the dielectric layer over the mesa to form a planarized surface such that a top of the gate, tops of the first sidewalls, and a top of the dielectric layer over the mesa are on the same planarized surface, depositing metal on the planzarized surface, annealing to form the gate into a metal silicided gate, and etching to remove excess non-silicided metal.
Abstract:
A resonator includes an anchor, an outer stiffener ring on an outer perimeter of the resonator, and a plurality of curved springs between the anchor and the outer stiffener ring.
Abstract:
A sensing array includes a plurality of pixels, one pixel of which includes: a sensor, the sensor including a first electrode, a second electrode, and an atomic defect site configured to be excited by light of a first frequency; a light source below the sensor and configured to emit light of the first frequency toward the defect site; and a radio frequency (RF) source below the sensor and configured to provide a first voltage to the first electrode, a second voltage to the second electrode, and an RF signal to the sensor, wherein the sensor is configured to sense a magnitude of a physical parameter by generating a photocurrent corresponding to a magnitude of a physical parameter and a differential between the first and second voltages, when excited by the light of the first frequency and affected by the RF signal.
Abstract:
A device preferably for use in an inertial navigation system the device having a single IC wafer; a plurality of sensors bonded to bond regions on said single IC wafer, at least one of said bond regions including an opening therein in gaseous communication with a pressure chamber associated with at least one of the plurality of said sensors; and a plurality of caps encapsulating said plurality of sensors, at least one of said plurality of caps forming at least a portion of said pressure chamber. A method of making the device is also disclosed.
Abstract:
A MEMS resonator comprising a baseplate wafer; a piezoelectric HF-VHF resonator that comprises a monolithic piezoelectric member having at least two separate spring piezoelectric support members integrally extending therefrom, each spring piezoelectric support member having at least a rounded corner; said piezoelectric resonator being attached to the baseplate wafer by said support members; wherein said monolithic piezoelectric member comprises first and second main surfaces joined by side edges; at least one of said side edges forming an angle of between 90 and 105 degrees with one of the first and second main surfaces.
Abstract:
A sensor includes an acceleration or magnetic field sensitive microelectromechanical systems (MEMS) resonator, configured to oscillate in at least a first normal mode and a second normal mode. The sensor further includes: a coarse readout circuit configured to drive the first normal mode, measure a motion of the first normal mode, and derive from the measured motion a coarse measurement of the true acceleration or true external magnetic field; and a fine readout circuit configured to drive the second normal mode, measure a motion of the second normal mode, and derive from the measured motion and the coarse measurement a measurement of the difference between the true acceleration or true external magnetic field and the coarse measurement.
Abstract:
An atomic defect sensor for measuring a magnitude of a physical parameter comprises an optical waveguide comprising an atomic defect site located within the optical waveguide, the optical waveguide being configured to guide an optical signal toward the atomic defect site, a first doped fin integrated with the optical waveguide at a first side of the optical waveguide, and a second doped fin integrated with the optical waveguide at a second side of the optical waveguide, wherein the atomic defect site is configured to be energetically stimulated by the optical signal in the presence of an RF signal, and to generate a photocurrent corresponding to the magnitude of the physical parameter and a voltage differential between the first and second doped fins.