摘要:
A method for forming damascene interconnect copper diffusion barrier layers includes implanting calcium into the sidewalls of the trenches and vias. The calcium implantation into dielectric layers, such as oxides, is used to prevent Cu diffusion into oxide, such as during an annealing process step. The improved barrier layers of the present invention help prevent delamination of the Cu from the dielectric.
摘要:
A carbon nanotube memory cell for an integrated circuit wherein a chamber is constructed in a layer of a dielectric material such as silicon nitride down to a first electrical contact. This chamber is filled with polysilicon. A layer of a carbon nanotube mat or ribbon is formed over the silicon nitride layer and the chamber. A dielectric material, such as an oxide layer, is formed over the nanotube strips and patterned to form an upper chamber down to the ribbon layer to permit the ribbon to move into the upper chamber or into the lower chamber. The upper chamber is then filled with polysilicon. A silicon nitride layer is formed over the oxide layer and a contact opening is formed down to the ribbon and filled with tungsten that is then patterned to form metal lines. Any exposed silicon nitride is removed. A polysilicon layer is formed over the tungsten lines and anisotropically etched to remove polysilicon on the horizontal surfaces but leave polysilicon sidewall spacers. A silicon oxide layer is deposited over the structure and also anisotropically etched forming silicon oxide sidewall spacers on the polysilicon sidewall spacers. The polysilicon is wet etched with an etchant selective to adjacent materials to remove the polysilicon sidewalls spacers and all of the polysilicon in the chambers. Silicon oxide is formed over the structure and into the upper portion of the openings to seal the now empty chambers. A passivation layer may then be formed.
摘要:
A structure for a thin-film electroluminescent (TFEL) device includes an EL phosphor layer sandwiched between a pair of insulator stacks, at least one of the stacks including a thin layer of silicon oxynitride in direct contact with the last grown side of the phosphor layer and a second thicker layer of barium tantalate. The silicon oxynitride layer has high resistivity, and when combined with a second insulator having a high dielectric constant, such as barium tantalate, produces an increase in luminance of the phosphor layer at conventional voltages. Both insulator stacks may include a silicon oxynitride layer, but this layer is in contact only with the last grown side of the EL phosphor layer. On the other side of the EL phosphor layer the high dielectric constant layer lies between the silicon oxynitride and the EL phosphor layer.
摘要:
Low voltage embedded memory having conductive oxide and electrode stacks is described. For example, a material layer stack for a memory element includes a first conductive electrode. A conductive oxide layer is disposed on the first conductive electrode. The conductive oxide layer has a plurality of oxygen vacancies therein. A second electrode is disposed on the conductive oxide layer.
摘要:
Low voltage embedded memory having conductive oxide and electrode stacks is described. For example, a material layer stack for a memory element includes a first conductive electrode. A conductive oxide layer is disposed on the first conductive electrode. The conductive oxide layer has a plurality of oxygen vacancies therein. A second electrode is disposed on the conductive oxide layer.
摘要:
A method of forming a self-aligned logic cell. A nanotube layer is formed over the bottom electrode. A clamp layer is formed over the nanotube layer. The clamp layer covers the nanotube layer, thereby protecting the nanotube layer. A dielectric layer is formed over the clamp layer. The dielectric layer is etched. The clamp layer provides an etch stop and protects the nanotube layer. The clamp layer is etched with an isotropic etchant that etches the clamp layer underneath the dielectric layer, creating an overlap of the dielectric layer, and causing a self-alignment between the clamp layer and the dielectric layer. A spacer layer is formed over the nanotube layer. The spacer layer is etched except for a ring portion around the edge of the dielectric layer. The nanotube layer is etched except for portions that are underlying at least one of the clamp layer, the dielectric layer, and the spacer layer, thereby causing a self-alignment between the clamp layer, the overlap to the dielectric layer, the spacer layer, and the nanotube layer.
摘要:
The present invention is directed to a method of fabricating a high-K dielectric films having a high degree of crystallographic alignment at grain boundaries of the film. A disclosed method involves providing a substrate and then depositing a material used in forming the high-K dielectric film and also using an ion beam to assist in the preferential formation of crystal lattices having a selected crystallographic orientation. The resultant dielectric film having a high degree of crystallographic alignment at grain boundaries of the film. Another disclosed method involves providing a substrate and then angularly depositing a material onto the substrate in order to assist in the preferential formation of crystal lattices having a selected crystallographic orientation. The resultant dielectric film having a high degree of crystallographic alignment at grain boundaries of the film.
摘要:
A method to maintain a well-defined gate stack profile, deposit or grow a uniform gate dielectric, and maintain gate length CD control by means of an inert insulating liner deposited after dummy gate etch and before the spacer process. The liner material is selective to wet chemicals used to remove the dummy gate oxide thereby preventing undercut in the spacer region. The method is aimed at making the metal gate electrode technology a feasible technology with maximum compatibility with the existing fabrication environment for multiple generations of CMOS transistors, including those belonging to the 65 nm, 45 nm and 25 nm technology nodes, that are being used in analog, digital or mixed signal integrated circuit for various applications such as communication, entertainment, education and security products.
摘要:
An integrated barrier and seed layer that is useful for creating conductive pathways in semiconductor devices. The barrier portion of the integrated layer prevents diffusion of the conductive material into the underlying dielectric substrate while the seed portion provides an appropriate foundation upon which to deposit the conductive material. The barrier portion of the integrated layer is formed of a metal nitride, while the seed portion is formed of ruthenium or a ruthenium alloy. The metal nitride forms an effective barrier layer while the ruthenium or ruthenium alloy forms an effective seed layer for a metal such as copper. In some embodiments, the integrated layer is formed in a way so that its composition changes gradually from one region to the next.
摘要:
A low resistance copper damascene interconnect structure is formed by providing a thin dielectric film such as SiC or SiOC formed on the sidewalls of the via and trench structures to function as a copper diffusion barrier layer. The dielectric copper diffusion barrier formed on the bottom of the trench structure is removed by anisotropic etching to expose patterned metal areas. The residual dielectric thus forms a dielectric diffusion barrier film on the sidewalls of the structure, and coupled with the metal diffusion barrier subsequently formed in the trench, creates a copper diffusion barrier to protect the bulk dielectric from copper leakage.