Abstract:
In a semiconductor laser element, a lower cladding layer, a lower optical waveguide layer, an InGaAs compressive-strain quantum-well active layer, an upper optical waveguide layer, and an upper cladding layer are formed in this order in a stripe-shaped region on a substrate. A current-blocking layer is formed on both sides of the compressive-strain quantum-well active layer so that the compressive-strain quantum-well active layer is sandwiched between two portions of the current-blocking layer, and trenches extending along the direction of the laser resonator are formed through the current-blocking layer. Instead of providing the trenches, the widths of the layers formed above the substrate are reduced so as to form a ridge structure.
Abstract:
In a semiconductor laser element, a lower cladding layer of AlGaInP of the first conductive type, a lower optical waveguide layer of AlGaInP, a quantum-well active layer of InGaP, an upper optical waveguide layer of AlGaInP, and an upper cladding layer of AlGaInP of the second conductive type are formed in this order on a substrate of GaAs of the first conductive type. The degree of mismatch Δa/a with the substrate and the thickness dw of the quantum-well active layer satisfy the conditions, −0.6%≦Δa/a ≦−0.3% and 10 nm≦dw≦20 nm. In addition, the resonator length Lc and the reflectances Rf and Rr of the opposite end facets satisfy the conditions, Lc≧400 μm and Rf×Rr≧0.5.
Abstract:
In a semiconductor laser device, a current confinement structure is realized by p-type and n-type layers formed above an active layer, where the p-type and n-type layers include a current stopping layer which has an opening for allowing current injection into only a predetermined stripe region of the active layer. In addition, a semiconductor layer is formed above the current confinement structure, and a pair of trenches are formed on both sides of the opening along the predetermined stripe region so as to extend from the semiconductor layer through the current stopping layer to at least the active layer. Further, an insulation film is formed on the semiconductor layer except that an area of the semiconductor layer located right above the predetermined stripe region is not covered by the insulation film, and an electrode is formed on the area of the semiconductor layer.
Abstract:
An instrument panel for use in an automobile includes a speedometer, an engine rotational speed meter and other indicators. A pointer of each meter is driven by a stepping motor via a reduction gear train made of synthetic resin. Terminals of the stepping motor field coils are soldered on a circuit board. After the heat of the soldering is dissipated, the heat-sensitive gear train is assembled to the circuit board. Thus, the resin gears are protected from being damaged by the soldering heat. The soldering is performed under an automatic refolw-soldering or flow-soldering process. As long as the soldering is performed before assembling the resin gears, all the components of the stepping motor and the reduction gear train may be contained in a casing.
Abstract:
A semiconductor laser has a first conduction type clad layer, an active layer and a second conduction type clad layer formed on a first conduction type semiconductor substrate in this order. An inverted mesa-shaped ridge is formed on a part of the second conduction type clad layer and a first conduction type current stopping layer is formed on each side of the ridge. Each side of the inverted mesa-shaped ridge is curved into a concave surface in a plane perpendicular to the longitudinal direction of the ridge.
Abstract:
Precision machinerycomponents such as a cylinder in a magnetic tape scanning apparatus, a cylinder base and/or a sub-chassis in a video tape recorder, etc. made of cured thermosetting resin composition comprising (A) a resin component comprising, particularly preferably, a terephthalic acid series unsaturated polyester resin, styrene and a saturated polyester resin, (B) an inorganic filler, and (C) short fibrous material such as carbon short fibers, have excellent dimensional accuracy and dimensional stability. When these precision machinery components are used, for example, in a video tape recorder, the same clear VTR picture as in the case of using those made of metal can be obtained.
Abstract:
The present invention can further increase the efficiency of light extraction from the light exit surface of a light-emitting device. A cell (10) for a light-emitting device includes: a first main wall (10a) and a second main wall (10b) which are disposed facing each other with a distance therebetween; and a sidewall (10c). The sidewall (10c) connects the first main wall (10a) and the second main wall (10b). The sidewall (10c) defines, together with the first and second main walls (10a, 10b), an internal space (10A) into which a luminescent substance is to be encapsulated. A portion of the sidewall (10c) located laterally of the internal space (10A) is white.
Abstract:
A full close position limiting member is adapted to be engaged with a valve gear when a valve is driven in a valve closing direction and reaches a full close position of the valve. An intermediate position limiting member is adapted to be engaged with a return spring when the valve is placed on a side of a predetermined intermediate position where a full close position of the valve is located. The intermediate position limiting member receives an intermediate reaction force from the return spring through engagement with the return spring, and the full close position limiting member receives a full close side engaging force from the valve gear. The full close side engaging force and the intermediate reaction force are generally directed in a predetermined direction.
Abstract:
A semiconductor light emitting element is equipped with a layered structure including an active layer, and electrode layers at the upper and lower surfaces thereof. At least one of the upper and lower electrode layers is divided into at least two electrodes, which are separated in the wave guiding direction of light. The active layer is structured to have different gain wavelengths along the wave guiding direction, to emit light having different spectra from each region corresponding to each of the at least two electrodes. The spectral distribution of output light is enabled to be varied by individually varying the current injected by each of the at least two divided electrodes.
Abstract:
A semiconductor light emitting element is equipped with a layered structure including an active layer, and electrode layers at the upper and lower surfaces thereof. At least one of the upper and lower electrode layers is divided into at least two electrodes, which are separated in the wave guiding direction of light. The active layer is structured to have different gain wavelengths along the wave guiding direction, to emit light having different spectra from each region corresponding to each of the at least two electrodes. The spectral distribution of output light is enabled to be varied by individually varying the current injected by each of the at least two divided electrodes.