Abstract:
An all-solid-state battery positive electrode 20 includes a positive electrode current collector 21 and a positive electrode active material layer 22 laminated on the positive electrode current collector 21. The positive electrode active material layer 22 includes an inclined portion 50 (a first inclined portion 50A) provided on an outer circumference thereof.
Abstract:
Provided is a substrate for carbon nanotube growth in which no metal particles as a catalyst aggregates and a method for manufacturing the substrate. A substrate for carbon nanotube growth 1 includes a base plate 2, a catalyst 3, a form-defining material layer 4 which allows the catalyst 3 to be dispersed and arranged, and a covering layer 5 which has a metal oxide to cover the catalyst. A method for manufacturing a substrate for carbon nanotube growth 1 includes a step of sputtering on a base plate 2 a metal which forms a catalyst 3 and oxidizing the surface of the metal, a step of sputtering a form-defining material on the base plate 2, and a step of further sputtering on the form-defining material a metal which forms a catalyst 3 and oxidizing the surface of the metal.
Abstract:
A battery module is provided with: battery cells comprising all-solid-state batteries having a positive electrode layer, a negative electrode layer, and a solid electrolyte layer; a support plate on which the battery cells are mounted; and a cooling medium channel through which a cooling medium for cooling the support plate flows, wherein electrode terminals are provided so as to project from one surface of the battery cells, bus bars capable of electrically connecting to the electrode terminals are provided on a battery cell mounting surface, the bus bars are in thermal contact with the support plate, and the battery cells are mounted on the support plate by causing one surface of the battery cells to face the cell mounting surface and electrically connecting the electrode terminals to the bus bars.
Abstract:
To provide an electrical storage device in which a positive electrode material and a negative electrode material are each impregnated with a different type of electrolytic solution and a method for making the same. An electrical storage device (1) includes a negative electrode (2) including an organic electrolytic solution (21), a positive electrode (3) including an aqueous electrolytic solution (31), and a solid electrolyte (4) disposed between the negative electrode (2) and the positive electrode (3). The negative electrode (2) is entirely sealed. The electrical storage device (1) includes a sealing member (5), which is provided at the periphery of the negative electrode (2) and seals the negative electrode (2). The solid electrolytes (4) form a pair including a sealing material and together with the sealing member (5) seal the negative electrode (2) so that the negative electrode (2) is disposed between the solid electrolytes (4).
Abstract:
To provide a lithium ion secondary battery in which it is possible to prevent an electrode end part from cracking, when current collector tabs of the lithium ion secondary battery are bound to each other and joined to a lead terminal. A lithium ion secondary battery includes a lithium ion secondary battery main body and a lead terminal. The lithium ion secondary battery main body has a laminated body repeatedly disposed with positive electrodes respectively including positive electrode current collectors, solid electrolytes, and negative electrodes respectively including negative electrode current collectors. The current collectors respectively extend from an end face of the laminated body in an identical direction to constitute a plurality of current collector tabs. The lead terminal is electrically coupled to the plurality of current collector tabs. The current collector tabs and the lead terminal are coupled to each other via an electrically-conductive tab guiding part.
Abstract:
The present invention is a solid-state battery formed of a plurality of repeatedly stacked solid-state battery cells each including a positive electrode layer, a negative electrode layer, a solid-state electrolyte layer, and a pair of current collector layers sandwiching said layers. One surface of each of the current collector layers is in contact with the positive electrode layer or the negative electrode layer. The other surface of the current collector layer is in contact with the current collector layer of the neighboring solid-state battery cell. The coefficient of friction on the other surface of the current collector layer is higher than the coefficient of friction on the one surface of the current collector layer. This can provide a solid-state battery that does not suffer displacement or rotation when stacking.
Abstract:
The present invention provides a solid-state battery cell and a solid-state battery module including the same. The solid-state battery cell includes: a laminate including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer present between the positive electrode layer and the negative electrode layer; a positive electrode tab connected to the positive electrode layer; a negative electrode tab connected to the negative electrode layer; and a pair of conductive clamping plates clamping the laminate from both sides in a laminating direction of the laminate. One of the pair of clamping plates is electrically connected to the positive electrode tab, and the other clamping plate is electrically connected to the negative electrode tab.
Abstract:
An all-solid-state battery positive electrode 20 includes a positive electrode current collector 21 and a positive electrode active material layer 22 laminated on the positive electrode current collector 21. The positive electrode active material layer 22 includes an inclined portion 50 (a first inclined portion 50A) provided on an outer circumference thereof.
Abstract:
Provided is a battery pack having excellent energy density and durability. A battery pack 100 includes solid-state battery modules 102 each configured such that a plurality of solid-state battery cells containing a solid electrolyte is stacked and electrolytic solution-based battery modules 32 each configured such that a plurality of electrolytic solution-based battery cells containing an electrolytic solution is stacked, the solid-state battery modules 102 and the electrolytic solution-based battery modules 32 being combined and housed in the pack. The solid-state battery modules 102 are arranged to surround the electrolytic solution-based battery modules 32.
Abstract:
Provided is an all-solid-state battery cell by which a battery module with good cooling efficiency can be obtained. The battery cell has a configuration in which an all-solid-state battery cell not using an electrolytic solution is used, a heat transfer material is disposed on a lower surface of an electrode laminate inside the battery cell, and heat is conducted from the heat transfer material through an exterior material to be dissipated.