摘要:
A video encoding system and method utilizes a three-dimensional (3-D) wavelet transform and entropy coding that utilize motion information in a way to reduce the sensitivity to motion. In one implementation, the coding process initially estimates motion trajectories of pixels in a video object from frame to frame in a video sequence to account for motion of the video object throughout the frames. After motion estimation, a wavelet transform is applied to produce coefficients within different sub-bands. The wavelet coefficients are coded independently for each sub-band to permit easy separation at a decoder, making resolution scalability and temporal scalability natural and easy. In particular, the coefficients are assigned various contexts based on the significance of neighboring samples in previous, current, and next frame, thereby taking advantage of any motion information between frames.
摘要:
A scalable layered video coding scheme that encodes video data frames into multiple layers, including a base layer of comparatively low quality video and multiple enhancement layers of increasingly higher quality video, adds error resilience to the enhancement layer. Unique resynchronization marks are inserted into the enhancement layer bitstream in headers associated with each video packet, headers associated with each bit plane, and headers associated with each video-of-plane (VOP) segment. Following transmission of the enhancement layer bitstream, the decoder tries to detect errors in the packets. Upon detection, the decoder seeks forward in the bitstream for the next known resynchronization mark. Once this mark is found, the decoder is able to begin decoding the next video packet. With the addition of many resynchronization marks within each frame, the decoder can recover very quickly and with minimal data loss in the event of a packet loss or channel error in the received enhancement layer bitstream. The video coding scheme also facilitates redundant encoding of header information from the higher-level VOP header down into lower level bit plane headers and video packet headers. Header extension codes are added to the bit plane and video packet headers to identify whether the redundant data is included.
摘要:
A video encoding system and method utilizes a three-dimensional (3-D) wavelet transform and entropy coding that utilize motion information in a way to reduce the sensitivity to motion. In one implementation, the coding process initially estimates motion trajectories of pixels in a video object from frame to frame in a video sequence to account for motion of the video object throughout the frames. After motion estimation, a 3-D wavelet transform is applied in two parts. First, a temporal 1-D wavelet transform is applied to the corresponding pixels along the motion trajectories in a time direction. The temporal wavelet transform produces decomposed frames of temporal wavelet transforms, where the spatial correlation within each frame is well preserved. Second, a spatial 2-D wavelet transform is applied to all frames containing the temporal wavelet coefficients. The wavelet transforms produce coefficients within different sub-bands. The process then codes wavelet coefficients. In particular, the coefficients are assigned various contexts based on the significance of neighboring samples in previous, current, and next frame, thereby taking advantage of any motion information between frames. The wavelet coefficients are coded independently for each sub-band to permit easy separation at a decoder, making resolution scalability and temporal scalability natural and easy. During the coding, bits are allocated among sub-bands according to a technique that optimizes rate-distortion characteristics.
摘要:
A motion-compensated video encoding scheme employs progressive fine-granularity layered coding to encode macroblocks of video data into frames having multiple layers, including a base layer of comparatively low quality video and multiple enhancement layers of increasingly higher quality video. Some of the enhancement layers in a current frame are predicted from different quality layers in reference frames. The video encoding scheme estimates drifting errors during the encoding and chooses a coding mode for each macroblock in the enhancement layer to maximize high coding efficiency while minimizing drifting errors.
摘要:
A resource allocation of multiple compressed AV streams delivered over the Internet is disclosed that achieves end-to-end optimal quality through a multimedia streaming TCP-friendly transport (MSTFP) protocol that adaptively estimates the network bandwidth while smoothing the sending rate. Resources allocated dynamically according to a media encoding distortion and network degradation algorithm. A scheme is also disclosed for dynamically estimating the available network bandwidth for streaming of objects, such as MPEG4 multiple video objects, in conjunction with the MSTFP protocol. The scheme can account for packet-loss rates to minimize end-to-end distortion for media delivery.
摘要:
Various methods and arrangements are provided for transmitting adaptive multimedia content over networks that provide differential services. By way of example, one method includes compressing video objects, generating at least one corresponding elementary stream containing the compressed video objects, classifying information within each elementary stream based on importance, and assembling the classified information into packets associated with different classes of network packets. In classifying the information within each elementary stream based on importance, different priority levels can be assigned to shape, motion, and texture information. Methods and arrangements are also provided for use with multimedia content information that includes audio information, image information, textual information, and the like.
摘要:
A resource allocation of multiple compressed AV streams delivered over the Internet is disclosed that achieves end-to-end optimal quality through a multimedia streaming TCP-friendly transport (MSTFP) protocol that adaptively estimates the network bandwidth while smoothing the sending rate. Resources allocated dynamically according to a media encoding distortion and network degradation algorithm. A scheme is also disclosed for dynamically estimating the available network bandwidth for streaming of objects, such as MPEG-4 multiple video objects, in conjunction with the MSTFP protocol. The scheme can account for packet-loss rates to minimize end-to-end distortion for media delivery.
摘要:
A resource allocation of multiple compressed AV streams delivered over the Internet is disclosed that achieves end-to-end optimal quality through a multimedia streaming TCP-friendly transport (MSTFP) protocol that adaptively estimates the network bandwidth while smoothing the sending rate. Resources allocated dynamically according to a media encoding distortion and network degradation algorithm. A scheme is also disclosed for dynamically estimating the available network bandwidth for streaming of objects, such as MPEG4 multiple video objects, in conjunction with the MSTFP protocol. The scheme can account for packet-loss rates to minimize end-to-end distortion for media delivery.
摘要:
Apparatus and method for classifying regions of an image, based on the relative “importance” of the various areas and to adaptively use the importance information to allocate processing resources and input image formation.
摘要:
Automatic video object extraction that defines substantially precise objects is disclosed. In one embodiment, color segmentation and motion segmentation are performed on a source video. The color segmentation segments the video by substantially uniform color regions thereof. The motion segmentation segments the video by moving regions thereof. The color regions and the moving regions are then combined to define the video objects. In varying embodiments, pre-processing and post-processing is performed to further clean the source video and the video objects defined, respectively.