MECHANISMS FOR REFRACTIVE INDEX TUNING SEMICONDUCTOR PHOTONIC DEVICES

    公开(公告)号:US20200150344A1

    公开(公告)日:2020-05-14

    申请号:US16733167

    申请日:2020-01-02

    Abstract: Embodiments include apparatuses, methods, and systems including a semiconductor photonic device having a waveguide disposed above a substrate. The waveguide has a first section including amorphous silicon with a first refractive index, and a second section including crystalline silicon with a second refractive index different from the first refractive index. The semiconductor photonic device further includes a heat element at a vicinity of the first section of the waveguide. The heat element is arranged to generate heat to transform the amorphous silicon of the first section of the waveguide to partially or completely crystallized crystalline silicon with a third refractive index. The amorphous silicon in the first section may be formed with silicon lattice defects caused by an element implanted into the first section. Other embodiments may also be described and claimed.

    OPTICAL DEVICE INCLUDING BURIED OPTICAL WAVEGUIDES AND OUTPUT COUPLERS

    公开(公告)号:US20190339466A1

    公开(公告)日:2019-11-07

    申请号:US16517159

    申请日:2019-07-19

    Abstract: Embodiments of the present disclosure are directed toward techniques and configurations for an optical coupler including an optical waveguide to guide light to an optical fiber. In embodiments, the optical waveguide includes a tapered segment to propagate the received light to the optical fiber. In embodiments, the tapered segment is buried below a surface of a semiconductor substrate to transition the received light within the semiconductor substrate from a first optical mode to a second optical mode to reduce a loss of light during propagation of the received light from the optical waveguide to the optical fiber. In embodiments, the surface of the semiconductor substrate comprises a bottom planar surface of a silicon photonic chip that includes at least one or more of passive or active photonic components. Other embodiments may be described and/or claimed.

    CONTACTLESS OPTICAL PROBING OF EDGE-COUPLED PHOTONIC ICs

    公开(公告)号:US20220163583A1

    公开(公告)日:2022-05-26

    申请号:US17102891

    申请日:2020-11-24

    Abstract: Systems and methods for testing a photonic IC (PIC) with an optical probe having an out-of-plane edge coupler to convey test signals between the out-of-plane probe and an edge coupled photonic waveguide within a plane of the PIC. To accommodate dimensions of the optical probe, a test trench may be fabricated in the PIC near an edge coupler of the waveguide. The optical probe may be displaced along one or more axes relative to a prober to position a free end of the prober within the test trench and to align the probe's out-of-plane edge coupler with an edge coupler of a PIC waveguide. Accordingly, a PIC may be probed at the wafer-level, without first dicing a wafer into PIC chips or bars. The optical probe may be physically coupled to a prober through a contact sensor to detect and/or avoid physical contact between probe and PIC.

Patent Agency Ranking