Abstract:
Technical solutions are described for implementing an optogenetics treatment using a probe and probe controller are described. A probe controller controls a probe to perform the method that includes emitting, by a light source of the probe, the probe is embeddable in a tissue, a light wave to interact with a corresponding chemical in one or more cells in the tissue. The method further includes capturing, by a sensor of the probe, a spectroscopy of the light wave interacting with the corresponding chemical. The method further includes sending, by the probe, the spectroscopy to an analysis system. The method further includes receiving, by the probe, from the analysis system, adjusted parameters for the light source, and adjusting, by a controller of the probe, settings of the light source according to the received adjusted parameters to emit a different light wave to interact with the corresponding chemical.
Abstract:
A biosensor includes an array of electrically conductive nanorods formed on a substrate. The nanorods each includes a nanoscale porous coating formed on a surface of the nanorods from silicon dioxide layers. An enzyme coating is bound to the porous coating.
Abstract:
A biosensor includes an array of electrically conductive nanorods formed on a substrate. The nanorods each includes a nanoscale porous coating formed on a surface of the nanorods from silicon dioxide layers. An enzyme coating is bound to the porous coating.
Abstract:
Aspects include methods of fabricating antibacterial surfaces for medical implant devices including patterning a photoresist layer on a silicon substrate and etching the silicon to generate a plurality of nanopillars. Aspects also include removing the photoresist layer from the structure and coating the plurality of nanopillars with a biocompatible film. Aspects also include a system for preventing bacterial infection associated with medical implants including a thin silicon film including a plurality of nanopillars.
Abstract:
Aspects include methods of fabricating antibacterial surfaces for medical implant devices including patterning a photoresist layer on a silicon substrate and etching the silicon to generate a plurality of nanopillars. Aspects also include removing the photoresist layer from the structure and coating the plurality of nanopillars with a biocompatible film. Aspects also include a system for preventing bacterial infection associated with medical implants including a thin silicon film including a plurality of nanopillars.
Abstract:
Surface enhanced Raman spectroscopy is employed to obtain chemical data with respect to cells while electrophysiological data relating to cell membranes is obtained using the patch clamp technique. A SERS-facilitating assembly is coupled to a micropipette and is used in conjunction with a monochromatic light source for generating scattered light. Surface enhanced Raman spectroscopy is employed to obtain the chemical data. Electrophysiological data is obtained using the same micropipette to perform the patch clamp technique.
Abstract:
Surface enhanced Raman spectroscopy is employed to obtain chemical data with respect to body tissue and cells. The chemical environments of stimulation implants and drug-delivery catheters are spectroscopically monitored in real time using an implantable probe. The probe includes a surface enhancer that facilitates surface enhanced Raman spectroscopy in opposing relation to an array of optical fibers. Light emitted by the optical fibers can be employed for chemical detection and/or tissue stimulation. Wavelength and optical power are selected based on whether the probe is employed for such detection or stimulation. Fabrication of a probe assembly that enables surface enhanced Raman spectroscopy is further disclosed.
Abstract:
Surface enhanced Raman spectroscopy is employed to obtain chemical data with respect to body tissue and cells. The chemical environments of stimulation implants and drug-delivery catheters are spectroscopically monitored in real time using an implantable probe. The probe includes a surface enhancer that facilitates surface enhanced Raman spectroscopy in opposing relation to an array of optical fibers. Light emitted by the optical fibers can be employed for chemical detection and/or tissue stimulation. Wavelength and optical power are selected based on whether the probe is employed for such detection or stimulation.
Abstract:
Methods of forming a lens include forming components on a lower substrate. The components are sealed on the lower substrate with a sealing layer. An upper substrate is formed over the sealing layer. The lower substrate is polished to a lower lens curvature.
Abstract:
A volumetric integrated circuit manufacturing method is provided. The method includes assembling a slab element of elongate chips, exposing a wiring layer between adjacent elongate chips of the slab element, metallizing a surface of the slab element at and around the exposed wiring layer to form a metallized surface electrically coupled to the wiring layer and passivating the metallized surface to hermetically seal the metallized surface.