Abstract:
A transistor in which a physical property of its channel is changed according to an applied voltage, and methods of manufacturing and operating the same are provided. The transistor may include a first conductive layer on a substrate, a phase change layer and a second conductive layer which are sequentially stacked on the first conductive layer, a first current direction limiting unit and a second current direction limiting unit formed on the second conductive layer by being separated within a space, a third conductive layer and a fourth conductive layer formed on the first current direction limiting unit and the second current direction limiting unit, respectively, a word line connected to the third conductive layer, a bit line connected to the fourth conductive layer, and a voltage lowering unit connected to the word line.
Abstract:
A semiconductor memory device may have a lower leakage current and/or higher reliability, e.g., a longer retention time and/or a shorter refresh time. The device may include a switching device and a capacitor. A source of the switching device may be connected to a first end of a metal-insulator transition film resistor, and at least one electrode of the capacitor may be connected to a second end of the metal-insulator transition film resistor. The metal-insulator transition film resistor may transition between an insulator and a conductor according to a voltage supplied to the first and second ends thereof.
Abstract:
A nonvolatile memory device having two or more resistors and methods of forming and using the same. A nonvolatile memory device having two resistance layers, and more particularly, to a nonvolatile memory device formed and operated using a resistance layer having memory switching characteristics and a resistance layer having threshold switching characteristics. The nonvolatile semiconductor memory device may include a lower electrode; a first resistance layer having at least two resistance characteristics formed on the lower electrode, a second resistance layer having threshold switching characteristics formed on the first resistance layer, and an upper electrode formed on the second resistance layer.
Abstract:
A semiconductor memory device may have a lower leakage current and/or higher reliability, e.g., a longer retention time and/or a shorter refresh time. The device may include a switching device and a capacitor. A source of the switching device may be connected to a first end of a metal-insulator transition film resistor, and at least one electrode of the capacitor may be connected to a second end of the metal-insulator transition film resistor. The metal-insulator transition film resistor may transition between an insulator and a conductor according to a voltage supplied to the first and second ends thereof.
Abstract:
A nonvolatile memory device having two or more resistors and methods of forming and using the same. A nonvolatile memory device having two resistance layers, and more particularly, to a nonvolatile memory device formed and operated using a resistance layer having memory switching characteristics and a resistance layer having threshold switching characteristics. The nonvolatile semiconductor memory device may include a lower electrode; a first resistance layer having at least two resistance characteristics formed on the lower electrode, a second resistance layer having threshold switching characteristics formed on the first resistance layer, and an upper electrode formed on the second resistance layer.
Abstract:
A nonvolatile memory device and method that uses a resistor having various resistance states. The memory device may include a switching device and a resistor. The resistor may be electrically connected with the switching device and may have one reset resistance state and at least two or more set resistance states.
Abstract:
A nonvolatile memory device including a lower electrode, a resistor structure disposed on the lower electrode, a diode structure disposed on the resistor structure, and an upper electrode disposed on the diode structure. A nonvolatile memory device wherein the resistor structure includes one resistor and the diode structure includes one diode. An array of nonvolatile memory devices as described above.
Abstract:
A memory device having one transistor and one resistant element as a storing means and a method for driving the memory device, includes an NPN-type transistor formed on a semiconductor substrate, an interlayer insulating film formed on the semiconductor substrate to cover the transistor in which a contact hole exposing a source region of the transistor is formed, a resistant material in which a bit data “0” or “1” is written connected to the source region of the transistor by a conductive plug or an insulating film, and a conductive plate contacting the resistant material. The memory device exhibits improved degree of integration, reduced current consumption by lengthening a refresh period thereof, and enjoys simplified manufacturing process due to a simple memory cell structure.
Abstract:
Polarization loss in ferroelectric capacitors can be prevented by consecutively applying partial switching pulses to an imprinted ferroelectric capacitor, which is able to achieve a certain polarization state and the zero polarization state simultaneously, under the condition of utilizing the bistable polarization states as memory logic. This effects an improvement in both the fatigue properties and life expectancy of ferroelectric capacitors.