摘要:
In some embodiments, the present disclosure pertains to methods of forming single-crystal graphenes by: (1) cleaning a surface of a catalyst; (2) annealing the surface of the catalyst; (3) applying a carbon source to the surface of the catalyst; and (4) growing single-crystal graphene on the surface of the catalyst from the carbon source. Further embodiments of the present disclosure also include a step of separating the formed single-crystal graphene from the surface of the catalyst. In some embodiments, the methods of the present disclosure also include a step of transferring the formed single-crystal graphene to a substrate. Additional embodiments of the present disclosure also include a step of growing stacks of single crystals of graphene.
摘要:
In some embodiments, the present disclosure pertains to methods of capturing a gas from an environment by associating the environment (e.g., a pressurized environment) with a porous carbon material that comprises a plurality of pores and a plurality of nucleophilic moieties. In some embodiments, the associating results in sorption of gas components (e.g., CO2 or H2S) to the porous carbon materials. In some embodiments, the methods of the present disclosure also include a step of releasing captured gas components from porous carbon materials. In some embodiments, the releasing occurs without any heating steps by decreasing environmental pressure. In some embodiments, the methods of the present disclosure also include a step of disposing released gas components and reusing porous carbon materials. Additional embodiments of the present disclosure pertain to porous carbon materials that are used for gas capture.
摘要:
Provided are methods of making graphene-carbon nanotube hybrid materials. Such methods generally include: (1) associating a graphene film with a substrate; (2) applying a catalyst and a carbon source to the graphene film; and (3) growing carbon nanotubes on the graphene film. The grown carbon nanotubes become covalently linked to the graphene film through carbon-carbon bonds that are located at one or more junctions between the carbon nanotubes and the graphene film. In addition, the grown carbon nanotubes are in ohmic contact with the graphene film through the carbon-carbon bonds at the one or more junctions. The one or more junctions may include seven-membered carbon rings. Also provided are the formed graphene-carbon nanotube hybrid materials.
摘要:
Various embodiments of the present disclosure pertain to methods of making magnetic carbon nanoribbons. Such methods generally include: (1) forming carbon nanoribbons by splitting carbon nanomaterials; and (2) associating graphene nanoribbons with magnetic materials, precursors of magnetic materials, or combinations thereof. Further embodiments of the present disclosure also include a step of reducing the precursors of magnetic materials to magnetic materials. In various embodiments, the associating occurs before, during or after the splitting of the carbon nanomaterials. In some embodiments, the methods of the present disclosure further comprise a step of (3) functionalizing the carbon nanoribbons with functionalizing agents. In more specific embodiments, the functionalizing occurs in situ during the splitting of carbon nanomaterials. In further embodiments, the carbon nanoribbons are edge-functionalized. Additional embodiments of the present disclosure pertain to magnetic carbon nanoribbon compositions that were formed in accordance with the methods of the present disclosure.
摘要:
In various embodiments, the present disclosure provides methods of forming graphene films by: (1) depositing a non-gaseous carbon source onto a catalyst surface; (2) exposing the non-gaseous carbon source to at least one gas with a flow rate; and (3) initiating the conversion of the non-gaseous carbon source to the graphene film, where the thickness of the graphene film is controllable by the gas flow rate. Additional embodiments of the present disclosure pertain to graphene films made in accordance with the methods of the present disclosure.
摘要:
A nanoporous (NP) memory may include a non-porous layer and a nanoporous layer sandwiched between the bottom and top electrodes. The memory may be free of diodes, selectors, and/or transistors that may be necessary in other memories to mitigate crosstalk. The nanoporous material of the nanoporous layer may be a metal oxide, metal chalcogenide, or a combination thereof. Further, the memory may lack any additional components. Further, the memory may be free from requiring an electroformation process to allow switching between ON/OFF states.
摘要:
In some embodiments, the present disclosure pertains to materials for use in CO2 capture in high pressure environments. In some embodiments, the materials include a porous carbon material containing a plurality of pores for use in a high pressure environment. Additional embodiments pertain to methods of utilizing the materials of the present disclosure to capture CO2 from various environments. In some embodiments, the materials of the present disclosure selectively capture CO2 over hydrocarbon species in the environment.
摘要:
In some embodiments, the present disclosure pertains to methods of producing graphene nanoplatelets by exposing graphite to a medium to form a dispersion of graphite in the medium. In some embodiments, the exposing results in formation of graphene nanoplatelets from the graphite. In some embodiments, the medium includes the following components: (a) an acid; (b) a dehydrating agent; and (c) an oxidizing agent. In some embodiments, the methods of the present disclosure result in the formation of graphene nanoplatelets at a yield of more than 90%. In some embodiments, the methods of the present disclosure result in the formation of graphene nanoplatelets in bulk quantities that are more than about 1 kg of graphene nanoplatelets. Additional embodiments of the present disclosure pertains to the formed graphene nanoplatelets. In some embodiments, the graphene nanoplatelets include a plurality of layers, such as from about 1 layer to about 100 layers.
摘要:
Vertically-stacked electronic devices having conductive carbon films are disclosed. The vertically-stacked devices exhibit non-linear current-versus-voltage response over a voltage sweep range in various embodiments. The vertically-stacked devices may be assembled into arrays where the vertically-stacked devices may be electrically addressed independently of one another. Uses of the vertically-stacked electronic devices and arrays as two-terminal memory devices, logic units, and sensors are disclosed. Crossbar arrays of vertically-stacked electronic devices having conductive carbon films and nanowire electrodes are disclosed.
摘要:
This invention is generally related to a method of making a molecule-surface interface comprising at least one surface comprising at least one material and at least one organic group wherein the organic group is adjoined to the surface and the method comprises contacting at least one organic group precursor with at least one surface wherein the organic group precursor is capable of reacting with the surface in a manner sufficient to adjoin the organic group and the surface. The present invention is directed to hybrid molecular electronic devices having a molecule-surface interface. Such hybrid molecular electronic devices may advantageously have either a top or bottom gate electrode for modifying a conductivity of the devices.