摘要:
A device includes a semiconductor substrate, and a Device Isolation (DI) region extending from a top surface of the semiconductor substrate into the semiconductor substrate. A gate dielectric is disposed over an active region of the semiconductor substrate, wherein the gate dielectric extends over the DI region. A gate electrode is disposed over the gate dielectric, wherein a notch of the gate electrode overlaps a portion of the DI region.
摘要:
A system and method for reducing cross-talk between photosensitive diodes is provided. In an embodiment a first color filter is formed over a first photosensitive diode and a second color filter is formed over a second photosensitive diode, and a gap is formed between the first color filter and the second color filter. The gap will serve to reflect light that otherwise would have crossed from the first color filter to the second color filter, thereby reducing cross-talk between the first photosensitive diode and the second photosensitive diode. A reflective grid may also be formed between the first photosensitive diode and the second photosensitive diode in order to assist in the reflection and further reduce the amount of cross-talk.
摘要:
An image sensor device includes a semiconductor substrate having a front side and a backside. A first dielectric layer is on the front side of the semiconductor substrate. A metal pad is in the first dielectric layer. A second dielectric layer is over the first dielectric layer and on the front side of the semiconductor substrate. An opening penetrates through the semiconductor substrate from the backside of the semiconductor substrate, wherein the opening includes a first portion extending to expose a portion of the metal pad and a second portion extending to expose a portion of the second dielectric layer. A metal layer is formed in the first portion and the second portion of the opening.
摘要:
A system and method for isolating semiconductor devices is provided. An embodiment comprises an isolation region that is laterally removed from source/drain regions of semiconductor devices and has a dielectric material extending over the isolation implant between the source/drain regions. The isolation region may be formed by forming an opening through a layer over the substrate, depositing a dielectric material along the sidewalls of the opening, implanting ions into the substrate after the deposition, and filling the opening with another dielectric material.
摘要:
A device includes an image sensor chip having an image sensor therein. A read-out chip is underlying and bonded to the image sensor chip, wherein the read-out chip includes a logic device selected from the group consisting essentially of a reset transistor, a source follower, a row selector, and combinations thereof therein. The logic device and the image sensor are electrically coupled to each other, and are parts of a same pixel unit. A peripheral circuit chip is underlying and bonded to the read-out chip, wherein the peripheral circuit chip includes a logic circuit.
摘要:
The structures of reflective shields and methods of making such structures described enable reflection of light that has not be absorbed by photodiodes in image sensor devices and increase quantum efficiency of the photodiodes. Such structures can be applied (or used) for any image sensors to improve image quality. Such structures are particular useful for image sensors with smaller pixel sizes and for long-wavelength light (or rays), whose absorption length (or depth) could be insufficient, especially for backside illumination (BSI) devices. The reflective shields could double, or more than double, the absorption depth for light passing through the image sensors and getting reflected back to the photodiodes. Concave-shaped reflective shields have the additional advantage of directing reflected light toward the image sensors.
摘要:
A semiconductor device includes a substrate including a pixel region incorporating a photodiode, a grid disposed over the substrate and having walls defining a cavity vertically aligned with the pixel region, and a color filter material disposed in the cavity between the walls of the grid.
摘要:
Provided is a method of fabricating an image sensor device. The method includes providing a first substrate having a radiation-sensing region disposed therein. The method includes providing a second substrate having a hydrogen implant layer, the hydrogen implant layer dividing the second substrate into a first portion and a second portion. The method includes bonding the first portion of the second substrate to the first substrate. The method includes after the bonding, removing the second portion of the second substrate. The method includes after the removing, forming one or more microelectronic devices in the first portion of the second substrate. The method includes forming an interconnect structure over the first portion of the second substrate, the interconnect structure containing interconnect features that are electrically coupled to the microelectronic devices.
摘要:
Provided is a method of fabricating an image sensor device. The method includes providing a device substrate having a front side and a back side. The method includes forming first and second radiation-sensing regions in the device substrate, the first and second radiation-sensing regions being separated by an isolation structure. The method also includes forming a transparent layer over the back side of the device substrate. The method further includes forming an opening in the transparent layer, the opening being aligned with the isolation structure. The method also includes filling the opening with an opaque material.
摘要:
Provided is an image sensor device. The image sensor device includes a substrate having a front side and a back side. The image sensor includes first and second radiation-detection devices that are disposed in the substrate. The first and second radiation-detection devices are operable to detect radiation waves that enter the substrate through the back side. The image sensor also includes an anti-reflective coating (ARC) layer. The ARC layer is disposed over the back side of the substrate. The ARC layer has first and second ridges that are disposed over the first and second radiation-detection devices, respectively. The first and second ridges each have a first refractive index value. The first and second ridges are separated by a substance having a second refractive index value that is less than the first refractive index value.