Abstract:
A thin film liquid crystal display, having a high aperture ratio, is described. The display has been designed so as to reduce the incidence of short circuits between its various parts. This has been achieved by modifying the structure of the lower electrode of the storage capacitor. The lower electrode is formed in the shape of a hollow square, two non-adjacent sides of the hollow square being at the level of the gate electrode, the other two sides of the hollow square being at the level of the data line. Two different means for providing electrical contact between all four sides of said lower capacitor electrode are described.
Abstract:
A keyboard includes a first substrate, a second substrate, a first electrode layer, and a second electrode layer. The first substrate includes a first upper surface and a first lower surface opposite the first upper surface. The second substrate is positioned apart from the first substrate and includes a second upper surface and a second lower surface. The second upper surface faces the first lower surface. The first electrode layer is positioned on the first lower surface and includes a number of first conductive layers disposed apart from each other and including a carbon nanotube layer structure. The second electrode layer is positioned on the second upper surface and includes a second conductive layer. A number of keys is positioned on the first upper surface or the second lower surface.
Abstract:
A keyboard includes a first substrate, a second substrate, a first electrode layer and a second electrode layer. The first substrate includes a first upper surface and a first lower surface. The second substrate is located apart from the first substrate and includes a second upper surface and a second lower surface. The second upper surface faces the first lower surface. The first electrode layer is located on the first lower surface and includes a first conductive layer including a carbon nanotube layer structure. The second electrode layer is located on the second upper surface and includes a second conductive layer. A number of keys is located on the first upper surface or the second lower surface.
Abstract:
A method for making a conductive film exhibiting electric anisotropy comprises forming a nanomaterial on a substrate, the nanomaterial having a cluster of interconnected nanounits, each of which being substantially transverse to the substrate and having one end bonded to the substrate. The method further includes stretching the nanounits along a first direction to remove the nanomaterial from the substrate so as to form a conductive film having strings of interconnected nanounits, where the nanounits of the strings substantially extend in the first direction. A conductive plate and a method for making the same is also disclosed, where the method further comprises attaching the conductive film to a second substrate.
Abstract:
A liquid crystal display screen includes an upper board, a lower board opposite to the upper board, and a liquid crystal layer located between the upper board and the lower board. The upper board includes a touch panel. The touch panel includes a plurality of transparent electrodes. At least one of the transparent electrodes includes a carbon nanotube structure.
Abstract:
A display device includes a circuit board connecting structure. The circuit board connecting structure includes a first circuit board, a soldering layer, and a second circuit board. The first circuit board includes a baseboard and a plurality of parallel elongate first electrodes defined at a predetermined area. The second circuit board includes a plurality of parallel elongate second electrodes positioned at the predetermined area. The second electrodes are electrically connected to the corresponding first electrodes via the soldering layer. A space defined by the projection of the second electrodes to the baseboard of the first circuit board is filled in by the soldering layer.
Abstract:
A method for making a liquid crystal display screen is provided. A touch panel including at least one carbon nanotube structure layer is prepared. A first polarizer is applied on a surface of the touch panel. A thin film transistor panel including a number of thin film transistors is prepared. A liquid crystal layer is placed between the first polarizer and the thin film transistors.
Abstract:
A process for forming an in-plane switching mode liquid crystal display (IPS-LCD), which defines pixel portions of the common and data electrodes by the same photo-masking and lithography procedure, is disclosed. Accordingly, the misalignment can be avoid. An in-plane switching mode liquid crystal display (IPS-LCD) is also disclosed. The IPS-LCD includes a storage capacitor consisting of storage-capacitor portions of the common and data electrode structures, which is disposed outside the pixel region so as to enhance the aperture ratio of the pixel region.
Abstract:
A method of fabricating cup shape cylindrical capacitor of high density Dynamic Random Access Memory (DRAM) cells is disclosed. The cup shape capacitor shape is achieved by first depositing a first polysilicon layer on a silicon substrate; a third dielectric layer is then formed overlaying the first polysilicon layer, and defined third dielectric crowns by the conventional lithography and etching techniques; a second polysilicon layer is deposited overlaying the third dielectric crowns and first polysilicon layer; the first polysilicon and second polysilicon layers are then vertically anisotropically etchback to define storage nodes of the cylindrical capacitors; the third dielectric crowns are removed; finally, the capacitor dielectric layer and the polysilicon top plate of the capacitor are formed to complete the cup shape cylindrical capacitor formation for high density DRAM applications.
Abstract:
A simplified tri-layer process for forming a thin film transistor matrix for a liquid crystal display is disclosed. By using a backside exposure technique, the masking step for patterning an etch stopper layer can be omitted. After forming an active region including a gate electrode and a scan line on the front side of a substrate, and sequentially applying an etch stopper layer and a photoresist layer over the resulting structure, the backside exposure is performed by exposing from the back side of the substrate. A portion of photoresist is shielded by the active region from exposure so that an etch stopper structure having a shape similar to the shape of the active region is formed without any photo-masking and lithographic procedure. Therefore, the above self-aligned effect allows one masking step to be reduced so as to simplify the process.