Abstract:
Microelectronic devices include a lower deck and an upper deck, each comprising a stack structure with a vertically alternating sequence of insulative structures and conductive structures arranged in tiers. A lower array of pillars extends through the stack structure of the lower deck, and an upper array of pillars extends through the stack structure of the upper deck. Along an interface between the lower deck and the upper deck, the pillars of the lower array align with the pillars of the upper array. At least at elevations comprising bases of the pillars, a pillar density of the pillars of the lower array differs from a pillar density of the pillars of the upper array, “pillar density” being a number of pillars per unit of horizontal area of the respective array. Related methods and electronic systems are also disclosed.
Abstract:
Methods of forming staircase structures. The method comprises forming a patterned hardmask over tiers. An exposed portion of an uppermost tier is removed to form an uppermost stair. A first liner material is formed over the patterned hardmask and the uppermost tier, and a portion of the first liner material is removed to form a first liner and expose an underlying tier. An exposed portion of the underlying tier is removed to form an underlying stair in the underlying tier. A second liner material is formed over the patterned hardmask, the first liner, and the second liner. A portion of the second liner material is removed to form a second liner and expose another underlying tier. An exposed portion of the another underlying tier is removed to form another underlying stair. The patterned hardmask is removed. Staircase structures and semiconductor device structure are also disclosed.
Abstract:
A method of forming a semiconductor structure comprises forming pools of acidic or basic material in a substrate structure. A resist is formed over the pools of acidic or basic material and the substrate structure. The acidic or basic material is diffused from the pools into portions of the resist proximal to the pools more than into portions of the resist distal to the pools. Then, the resist is exposed to a developer to remove a greater amount of the resist portions proximal to the pools compared to the resist portions distal to the pools to form openings in the resist. The openings have wider portions proximal to the substrate structure and narrower portions distal to the substrate structure. The method may further comprise forming features in the openings of the resist. The features have wider portions proximal to the substrate structure and narrower portions distal to the substrate structure.
Abstract:
A method of forming a semiconductor structure comprises forming pools of acidic or basic material in a substrate structure. A resist is formed over the pools of acidic or basic material and the substrate structure. The acidic or basic material is diffused from the pools into portions of the resist proximal to the pools more than into portions of the resist distal to the pools. Then, the resist is exposed to a developer to remove a greater amount of the resist portions proximal to the pools compared to the resist portions distal to the pools to form openings in the resist. The openings have wider portions proximal to the substrate structure and narrower portions distal to the substrate structure. The method may further comprise forming features in the openings of the resist. The features have wider portions proximal to the substrate structure and narrower portions distal to the substrate structure.
Abstract:
A method of forming a semiconductor device assembly comprises forming tiers comprising conductive structures and insulating structures in a stacked arrangement over a substrate. Portions of the tiers are selectively removed to form a stair step structure comprising a selected number of steps exhibiting different widths corresponding to variances in projected error associated with forming the steps. Contact structures are formed on the steps of the stair step structure. Semiconductor device structures and semiconductor devices are also described.
Abstract:
A method of forming a semiconductor structure comprises forming pools of acidic or basic material in a substrate structure. A resist is formed over the pools of acidic or basic material and the substrate structure. The acidic or basic material is diffused from the pools into portions of the resist proximal to the pools more than into portions of the resist distal to the pools. Then, the resist is exposed to a developer to remove a greater amount of the resist portions proximal to the pools compared to the resist portions distal to the pools to form openings in the resist. The openings have wider portions proximal to the substrate structure and narrower portions distal to the substrate structure. The method may further comprise forming features in the openings of the resist. The features have wider portions proximal to the substrate structure and narrower portions distal to the substrate structure.
Abstract:
A self-assembled nanostructure comprises first domains and second domains. The first domains comprise a first block of a block copolymer material and an activatable catalyst. The second domains comprise a second block and substantially without the activatable catalyst. The activatable catalyst is capable of generating catalyst upon application of activation energy, and the generated catalyst is capable of reacting with a metal oxide precursor to provide a metal oxide. A semiconductor structure comprises such self-assembled nanostructure on a substrate.
Abstract:
Methods of forming features are disclosed. One method comprises forming a resist over a pool of acidic or basic material on a substrate structure, selectively exposing the resist to an energy source to form exposed resist portions and non-exposed resist portions, and diffusing acid or base of the acidic or basic material from the pool into proximal portions of the resist. Another method comprises forming a plurality of recesses in a substrate structure. The plurality of recesses are filled with a pool material comprising acid or base. A resist is formed over the pool material and the substrate structure and acid or base is diffused into adjacent portions of the resist. The resist is patterned to form openings in the resist. The openings comprise wider portions distal to the substrate structure and narrower portions proximal to the substrate structure. Additional methods and semiconductor device structures including the features are disclosed.
Abstract:
Microelectronic devices include a lower deck and an upper deck, each comprising a stack structure with a vertically alternating sequence of insulative structures and conductive structures arranged in tiers. First and second arrays of pillars extend through the stack structure of the lower and upper decks, respectively. In one or more of the first and second pillar arrays, at least some pillars exhibit a greater degree of bending away from a vertical orientation than at least some other pillars. The pillars of the first array align with the pillars of the second array along an interface between the lower and upper decks. Related methods are also disclosed.
Abstract:
A method of forming a semiconductor device comprising forming a patterned resist over a stack comprising at least one material and removing a portion of the stack exposed through the patterned resist to form a stack opening. A portion of the patterned resist is laterally removed to form a trimmed resist and an additional portion of the stack exposed through the trimmed resist is removed to form steps in sidewalls of the stack. A dielectric material is formed between the sidewalls of the stack to substantially completely fill the stack opening, and the dielectric material is planarized. Additional methods are disclosed, as well as semiconductor devices.