摘要:
The invention relates to a compound comprising at least one memory unit consisting of an organic memory material, especially for use in CMOS structures, said compound being characterized by a) at least one first anchor group (1) provided with a reactive group for covalently bonding to a first electrode (10), especially a bottom electrode of a memory cell (102), and b) at least one second anchor group (2) provided with a reactive group for bonding to a second electrode (20), especially a top electrode of a memory cell (102). The invention also relates to a semiconductor component, and to a method for producing a semiconductor component. The invention thus provides a compound, a semiconductor component, and a method for producing the semiconductor component, by which means molecular memory layers can be efficiently formed on conventional substrates.
摘要:
The semiconductor memory cell is characterized in that at least one modulation region is provided between a first gate electrode of the gate electrode configuration and the insulation region, and in that the modulation region has or is formed from a material or modulation material having electrical and/or further material properties that can be modulated in a controllable manner between at least two states in such a way that, in accordance with these states of the modulation material or of the modulation region, the channel region can be influenced electromagnetically, in particular for a given electrical potential difference between the first gate electrode and the source/drain regions.
摘要:
Materials are described for producing memory cells which have a size in the nanometer range and include a CT complex located between two electrodes. The CT complex includes thiophene derivatives, pyrrole derivatives or phthalocyanines together with naphthalenetetracarboxylic acid, dianhydrides, diamides, fullerenes or perylene compounds.
摘要:
A device for the storage of at least one of solid, liquid or gaseous objects. The device including at least one compartment that is configured to contain at least one object. The filling or emptying of the compartment triggers an electrically-readable signal. In one embodiment, the compartment may be mechanically modified and an electrically-readable signal is generated based on a corresponding mechanical change to the compartment. An electrical data memory with at least one memory cell is integrated into the device. The memory cell is assigned to the compartment. The memory cell is configured to adopt a value corresponding to the mechanical change to the compartment. The device also includes an analytical circuit for reading the data memory.
摘要:
A method for through-plating field effect transistors with a self-assembled monolayer of an organic compound as gate dielectric includes through-plating by patterning a gate electrode material, and bringing an organic compound having dielectric properties into contact with the contact hole material and the gate electrode material. A contact hole material and the gate electrode material are at least partially uncovered. The contact hole is material not identical to the gate electrode material. A self-assembled monolayer of the organic compound is formed above the gate electrode material. The method also includes depositing and patterning the source and drain contacts without removing the self-assembled monolayer of the organic compound, and depositing a semiconductor material.
摘要:
An embodiment of the invention provides a method for the treatment of a substrate made of paper or a substrate containing paper as support material for a semiconductor component. In an embodiment, the substrate surface is contacted with a solution comprising at least one phenol-containing base polymer and/or copolymer and a crosslinker component. A polymer formulation deposits from the solution onto the surface. The solution may further include an acid catalyst. Embodiments include a semiconductor component formed according to the method of the invention.
摘要:
Embodiments of the invention provide a semiconductor component and a method of manufacture thereof. A semiconductor component comprises: a gate electrode layer adjacent a substrate, and a gate dielectric layer adjacent the gate electrode layer. The gate dielectric layer comprises a monolayer of at least one compound, wherein the compound has an aromatic or a condensed aromatic molecular group. The molecular group is capable of π-π interactions, which stabilize the monolayer. In an embodiment, the semiconductor component is an organic field effect transistor (OFET). In an embodiment of the invention, a method includes forming the monolayer using a liquid phase immersion process.
摘要:
A semiconductor device includes a semiconductor section formed from an organic semiconductor material, a first contact for injecting charge carriers into the semiconductor section and a second contact for extracting charge carriers from the semiconductor section, wherein a layer of a nitrile or of an isonitrile is arranged between the first contact and the semiconductor section and/or between the second contact and the semiconductor section. The nitrile or isonitrile acts as a charge transfer molecule facilitating the transfer of charge carriers between contact and organic semiconductor material. This allows the contact resistance between contact and organic semiconductor material to be significantly reduced.
摘要:
An embodiment of the invention provides an integrated circuit having an organic field effect transistor (OFET) with a dielectric layer. The dielectric layer is prepared from a polymer formulation comprising: about 100 parts of at least one crosslinkable base polymer, from about 10 to about 20 parts of at least one di- or tribenzyl alcohol compound as an electrophilic crosslinking component, from about 0.2 to about 10 parts of at least one photo acid generator, and at least one solvent. Another embodiment provides a semiconductor fabrication method. The method comprises applying the polymer formulation to a surface of a substrate, drying the polymer formulation, crosslinking the polymer formulation after drying, and baking the polymer formulation after crosslinking.