摘要:
A system and method for trapping a charged particle is disclosed. A time-varying periodic multipole electric potential is generated in a trapping volume. A charged particle under the influence of the multipole electric field is confined to the trapping volume. A three electrode configuration giving rise to a 3D Paul trap and a four planar electrode configuration giving rise to a 2D Paul trap are disclosed.
摘要:
The present invention relates to ionic electrodes, particularly microelectrodes and electrode arrays, and also relates to fabrication methods for such electrodes. In particular, the present invention relates to planar polymer electrodes for making patch clamp measurements of ionic currents through biological membranes, such as the plasma membranes of living cells. The electrodes of the present invention are useful for measuring individual and multisite cell membrane currents and voltages, as well as in high-throughput screening procedures.
摘要:
Optically pumped coupled quantum well devices are disclosed. The devices store bits as carrier packets in depressions in the conduction and/or valence band(s) of a single crystal; the band between the depressions is sloped in a common direction which provides unidirectionality. The carrier packets are shifted from depression to depression by optically exciting the carriers and relying on the arrangement of depressions and band slopes; the excitation is conveniently performed by laser illumination. The depressions may be sufficiently small to discretize the energy levels and thereby permit the partitioning of the depressions into groups with each group having depressions of substantially the same energy level structure. The carriers in depressions of one group can then be selectively excited by illumination with a laser or narrow band monochromatic incoherent light source tuned to the energy level structure; this allows multiphase operation of the shifting function.
摘要:
A tunneling device (50) with the emitter (62) to collector (58) current transported by resonant tunneling through a quantum well (52) and controlled by carriers injected into the well (52) from a base (60) is disclosed. The injected carriers occupy a first energy level in the well (52) and the resonant tunneling is thorough a second energy level in the well (52) thereby separating the controlled carriers from the controlling carriers. AnotherThree-terminal tunneling devices using three different bandgap semiconductor materials to segregate controlling carriers from controlled carriers are disclosed. Preferred embodiments include narrow bandgap quantum wells and medium bandgap emitters so that narrow bandgap bases may inject and withdraw controlling electrons to the well by tunneling with the controlled electron current tunneling through a higher energy level in the well or so that medium bandgap bases may control holes in the well with only a small forward bias on the emitter-base junction and thereby control electrons tunneling through the well from emitter to collector.
摘要:
A tunneling device (50) with the emitter (62) to collector (58) current transported by resonant tunneling through a quantum well (52) and controlled by carriers injected into the well (52) from a base (60) is disclosed. The injected carriers occupy a first energy level in the well (52) and the resonant tunneling is thorough a second energy level in the well (52) thereby separating the controlled carriers from the controlling carriers. Three-terminal tunneling devices using three different bandgap semiconductor materials to segregate controlling carriers from controlled carriers are disclosed. Preferred embodiments include narrow bandgap quantum wells and medium bandgap emitters so that narrow bandgap bases may inject and withdraw controlling electrons to the well by tunneling with the controlled electron current tunneling through a higher energy level in the well or so that medium bandgap bases may control holes in the well with only a small forward bias on the emitter-base junction and thereby control electrons tunneling through the well from emitter to collector.
摘要:
A three-terminal quantum well device, which functions somewhat analogously to an MOS transistor. That is, the three terminals of the device can generally be considered as source, gate, and drain. An output contact is connected by tunneling to a number of parallel chains of quantum wells, each well being small enough that the energy levels in the well are quantized discretely. In each of these chains of wells, the second well is coupled to a common second conductor, and the first well is electronically coupled to a common first conductor.
摘要:
Optically pumped coupled quantum well devices are disclosed. The devices store bits as carrier packets in depressions in the conduction and/or valence band(s) of a single crystal; the band between the depressions is sloped in a common direction which provides unidirectionality. The carrier packets are shifted from depression to depression by optically exciting the carriers and relying on the arrangement of depressions and band slopes; the excitation is conveniently performed by laser illumination. The depressions may be sufficiently small to discretize the energy levels and thereby permit the partitioning of the depressions into groups with each group having depressions of substantially the same energy level structure. The carriers in depressions of one group can then be selectively excited by illumination with a laser or narrow band monochromatic incoherent light source tuned to the energy level structure; this allows multiphase operation of the shifting function.
摘要:
Quantum-coupled devices, wherein at least two closely adjacent potential wells, (e.g. islands of GaAs in an AlGaAs lattice) are made small enough that the energy levels of carriers within the wells are discretely quantized. This means that, when the bias between the wells is adjusted to align energy levels of the two wells, tunneling will occur very rapidly, whereas when energy levels are not aligned, tunneling will be greatly reduced. To provide output coupling from these quantum-well devices to macroscopic currents, the output from the quantum-well devices is injected into localized states close to an extremely small metal line (e.g. 200 Angstroms square in section). These trapped charged perturb the resistance of a metal line significantly, so that a conventional sense amplifier can be used for differential sensing between two such narrow metal lines, to provide macroscopic outputs.