摘要:
A fluid catalytic cracking process for producing relatively low emissions fuels. The feedstock is relatively low in nitrogen and aromatics and high in hydrogen content and the catalyst is a rare-earth promoted amorphous silica-alumina catalyst. The feedstock can be characterized as having less than about 50 wppm nitrogen; greater than about 13 wt. % hydrogen; less than about 7.5 wt. % 2+ ring aromatic cores; and not more than about 15 wt. % aromatic cores overall.
摘要:
The activity of supported cobalt catalysts for hydrocarbon synthesis is maximized by carrying out the reduction at conditions that keep both the partial pressure of water vapor and the maximum reduction temperature below critical maximum values. For titania supported cobalt catalysts, the preferred maximum water partial pressure is one atmosphere and the preferred maximum reduction temperature is 375.degree. C.
摘要:
Crystalline aluminosilicate zeolites having increased silica to alumina mole ratios are prepared by a process wherein a conventional crystalline aluminosilicate zeolite is treated to remove alumina from the crystal lattice. By-product non-framework amorphous alumina is then selectively removed from the zeolite either by using a blocking agent, to prevent removal of framework aluminum during a subsequent acid treatment, or by using a selective organic acid extracting agent. The invention is also directed to high silica crystalline zeolites prepared by the present process.
摘要:
In a hydrocarbon upgrading process, a hydrocarbon feed is treated in at least one of a steam cracker, catalytic cracker, coker, hydrocracker, and reformer under suitable conditions to produce a first stream comprising olefinic and aromatic hydrocarbons. A second stream composed mainly of C4 to C12 olefinic and aromatic hydrocarbons is recovered from the first stream and at least part of the second stream is contacted with a catalyst in the absence of added hydrogen under reaction conditions including a temperature of about 450° C. to about 70° C. effective to dealkylate, transalkylate, crack and aromatize components of the second stream to produce a third stream having an increased benzene and/or toluene content compared with the second stream and a C3− olefin by-product. The C3− olefin by-product and a fourth stream comprising toluene are then recovered from the third stream.
摘要:
In a hydrocarbon upgrading process, a hydrocarbon feed is treated in at least one of a steam cracker, catalytic cracker, coker, hydrocracker, and reformer under suitable conditions to produce a first stream comprising olefinic and aromatic hydrocarbons. A second stream composed mainly of C4 to C12+ olefinic and aromatic hydrocarbons is recovered from the first stream and blended said second stream with a residual fraction from a steam cracker or an atmospheric or vacuum distillation unit to produce a third stream. The third stream is then catalytically pyrolyzed in a reactor under conditions effective to produce a fourth stream having an increased benzene and/or toluene content compared with said second stream and a C3-olefin by-product. The C3-olefin by-product is recovered and benzene and/or toluene are recovered from the fourth stream.
摘要:
Disclosed are silicoaluminophosphates (SAPOs) having unique silicon distributions and high catalytic cracking activity a method for their preparation and their use as FCC catalysts. More particularly, the new SAPOs have a high silica:alumina ratio and favorable Si atom distribution. The new SAPOs may have a small crystal size and may be synthesized from a single-phase synthesis solution.
摘要:
Disclosed are silicoaluminates (SAPOs) having unique silicon distributions, a method for their preparation and their use as naphtha cracking catalysts. More particularly, the new SAPOs have a high silica:alumina ratio and favorable Si atom distribution.
摘要:
Disclosed are silicoaluminophosphates (SAPOs) having unique silicon distributions, a method for their preparation and their use as catalysts for the catalytic cracking of hydrocarbon feedstocks. More particularly, the new SAPOs have a high silica:alumina ratio, and are prepared from microemulsions containing surfactants.
摘要:
High surface purity heat transfer solids are formed, suitably by washing and treating particulate refractory inorganic solids, notably alumina, which contains as impurities up to about 0.5 wt. % silicon and/or up to about 500 wppm boron, with an acid, or dilute acid solution sufficient to reduce the concentration of silicon and boron in the outer peripheral surface layer of the particles, e.g., as measured inwardly toward the center of a particle to a depth of about 50 .ANG. using X-ray photoelectron spectroscopy, to no greater than about 5 atom percent silicon and boron, preferably about 2 atom percent silicon and boron, based on the total number of cations within said outer peripheral surface layer, thereby reducing the tendency of said particles to sinter and agglomerate in the conversion of said hydrocarbon to hydrogen and carbon monoxide in a fluidized bed synthesis gas operation vis-a-vis particles otherwise similar except that the particles are not treated with the acid. The tendency of the particles to sinter and agglomerate is further reduced by the additional removal of sodium, iron, calcium, and titanium impurities from the outer peripheral surface layer of the particles. Preferably the latter named impurities, or impurities other than silicon and boron, are reduced to a concentration below about 20 atom %, more preferably to a concentration below about 15 atom %, in the outer surface layer of the particles.
摘要:
A process for the reactivation, or rejuvenation of a nickel-alumina catalyst employed in the production of a gas comprised of an admixture of hydrogen and carbon monoxide, or synthesis gas, by the conversion, in a reactor, or reaction zone, of light hydrocarbons in a fluidized bed of the catalyst at elevated temperature, in the presence of steam and oxygen. Catalyst reactivation is accomplished by withdrawing a portion of the catalyst from the fluidized bed of the reactor and treating the catalyst in an oxidation zone at temperature sufficient to oxidize and convert the nickel component of the catalyst to nickel aluminate and disperse said nickel aluminate within the alumina support, and then recycling the treated catalyst to the reactor, or reaction zone, to reactivate and increase the activity of the catalyst. The catalyst, on reduction in the reactor, or reaction zone, is provided an additional boost in activity by washing, treating or contacting the catalyst from the elevated temperature oxidation zone with an acid sufficient to remove trace impurities without removing any substantial amount of the nickel aluminate, and without forming a residue on the catalyst surface. The normal tendency of the catalyst to agglomerate at reaction conditions is also reduced by the acid treatment.