Abstract:
The current disclosure describes an automated high-throughput seed sorting system for separating seed via oil and/or moisture content using novel nuclear magnetic resonance (NMR) systems and methods. The disclosed systems and methods for measuring the oil and/or moisture content of a single seed in a low-field time domain NMR instrument are superior in sample throughput and signal-to-noise ratio to conventional NMR systems and methods (free induction decay or spin echo) for single seed oil/moisture measurement.
Abstract:
An automated seed sampler system includes an imaging device for obtaining images of seeds, an orienting device for orienting the seeds based on the images, and a sampling station for removing tissue from the oriented seeds. In some aspects, the system also includes a transport subsystem for supporting the oriented seeds and conveying the oriented seeds to the sampling station. A method for removing tissue from seeds includes imaging the seeds, orienting the seeds based on image information obtained from the seeds, and removing tissue from the oriented seeds. In some aspects, the method also includes transporting the oriented seeds in a transport subsystem to a sampling station for removing the tissue from the oriented seeds, and/or collecting the tissue removed from the oriented seeds so that a one-to-one correspondence exists between the tissue and the sampled seeds, and/or analyzing the tissue for characteristics indicative of genetic and/or chemical traits.
Abstract:
An automated method is used to direct seeds to desired locations. The method includes isolating individual seeds from a plurality of seeds, for example, in a seed bin, and then measuring desired properties of the seeds. The measured properties are evaluated, and the seeds are then directed to desired locations, for example, based on the measured properties. The individual seeds are each contacted with a stream of air to move the seeds to the desired locations.
Abstract:
Systems and methods are provided for evaluating and sorting seeds based on characteristics of the seeds. One method generally includes collecting image data from different parts of the seeds, and then analyzing the collected image data to determine if the seeds exhibit at least one or more characteristics. The seeds can then be sorted to desired seed repositories based on whether or not the seeds exhibit the at least one or more characteristics.
Abstract:
An automated method is used to direct seeds to desired locations. The method includes isolating individual seeds from a plurality of seeds, for example, in a seed bin, and then measuring desired properties of the seeds. The measured properties are evaluated, and the seeds are then directed to desired locations, for example, based on the measured properties. The individual seeds are each contacted with a stream of air to move the seeds to the desired locations.
Abstract:
An automated seed sampler system for removing tissue from seeds includes an orientation system configured to orient seeds in a desired orientation, a sampling station configured to remove tissue from each of the oriented seeds, a sample collection subsystem configured to receive the tissue removed from each of the oriented seeds, and a seed collection subsystem configured to receive each of the seeds from which the tissue is removed. The sample collection subsystem and the seed collection subsystem are configured to facilitate a one-to-one correspondence between the seeds received at the seed collection subsystem and the tissue removed from the seeds and received at the sample collection subsystem.
Abstract:
An automated method for operating an automated seed sampling system having a seed loading station, a seed transport subsystem, and a seed sampling station generally includes sensing whether individual seeds are successfully isolated from a bulk of seeds at the seed loading station, and sensing whether the isolated seeds are properly positioned by the seed transport subsystem adjacent the seed sampling station in preparation for removing tissue from the isolated seeds. In some aspects, the method further includes analyzing the tissue removed from the seeds for presence or absence of at least one characteristic, and selecting seeds based on presence or absence of the at least one characteristic.
Abstract:
Novel methods are provided to facilitate germplasm improvement activities through the use of high throughput, nondestructive sampling of seeds. A method for introgressive hybridization, for example, generally includes removing tissue samples from individual seeds using an automated seed sampler without affecting germination viability of the seeds, and analyzing nucleic acids extracted from the tissue samples for at least one genetic marker. The method then further includes selecting the sampled seeds that possess the at least one genetic marker, cultivating fertile plants from the selected seeds, and crossing the fertile plants with other plants.
Abstract:
An automated small particle distribution system is provided for transferring small particles from source tubes to destination tubes. The system includes a loading deck that is structured and operable to store and provide a plurality of source tube trays and a plurality of destination tube trays. Each source tube tray includes a plurality of source tubes stored therein, and each destination tube tray includes a plurality of destination tubes stored therein. The system additionally includes a work deck is structured and operable to receive selected source tube trays and selected destination tube trays from the loading deck, aspirate various specified amounts of small objects stored in selected source tubes, and deposit the aspirated small objects into selected destination tubes without cross-contamination of small objects.
Abstract:
An automated method for analyzing seeds generally includes collecting image data from individual seeds using a seed sampling system, determining at least one characteristic of each of the individual seeds based on the collected image data, and removing tissue from each of the individual seeds using the seed sampling system. The method also includes, prior to removing the tissue sample from each of the individual seeds, adjusting at least one operational parameter of the seed sampling system based on the at least one characteristic of the seed from which the tissue is to be removed to thereby allow for generally consistent removal of tissue from each of the individual seeds. In some aspects, the method further includes analyzing the tissue removed from the seeds for presence or absence of at least one characteristic, and selecting seeds based on presence or absence of the at least one characteristic.