摘要:
A method is provided for creating composites by combining pre-fabricated nanoscale structures (nanostructures) and other materials in which the nanostructures are anchored. This method results in anchored nanostructures with their base held and encased within the anchoring material to a specified depth and with a specified length of protrusion of the nanostructures from the anchoring material. This represents a major advance over previous methods of creating composites containing nanostructures which were limited to fully embedded nanostructures or, at best, very limited and uncontrolled protrusion of nanostructures. In summary, the current method involves bringing nanostructures and anchoring materials into physical contact in a controlled fashion and optionally conducting a treatment step to complete the anchoring process.
摘要:
A device and methods for continuous precision blood sampling from a patient with a micro impedance pump as the driver in a microfluidic system. Depending on the needs of medical technologies, the micro impedance pump in the intravascular diagnostic and therapeutic sampling system serves in a forward pumping function for blood sampling, in a backward infusing for therapeutic treatment, and in a valving function for controlling fluid flow.
摘要:
Disclosed herein are methods, devices, and other components for synthesizing polymers. In some embodiments, numerous sites can be multiplexed together to allow for effective nucleic acid synthesis.
摘要:
A device, system, and method for measuring the depth of a material layer such as a blood vessel plaque layer is disclosed. A fiber optic bundle housed in a balloon catheter projects a laser dot toward a conical mirror, which reflects the dot perpendicularly onto the surface of the plaque. The laser dot is reflected back from the plaque layer with a substantially Gaussian intensity profile. The conical mirror directs the reflected image back to the fiber optic bundle, which delivers the image to a sensor. The depth of the plaque layer can be determined by comparing the diameter of the image intensity profile to a pre-obtained normalized data set.
摘要:
A method and device for high-resolution three-dimensional (3-D) imaging which obtains camera pose using defocusing is disclosed. The device comprises a lens obstructed by a mask having two sets of apertures. The first set of apertures produces a plurality of defocused images of the object, which are used to obtain camera pose. The second set of optical filters produces a plurality of defocused images of a projected pattern of markers on the object. The images produced by the second set of apertures are differentiable from the images used to determine pose, and are used to construct a detailed 3-D image of the object. Using the known change in camera pose between captured images, the 3-D images produced can be overlaid to produce a high-resolution 3-D image of the object.
摘要:
Implants and methods for treating ocular disorders are disclosed. One implant has an inlet portion configured to extend through a portion of a tissue of an eye and an outlet portion configured to extend into and along a physiologic outflow pathway of the eye. The implant provides a flow path between an anterior chamber of the eye and the physiologic outflow pathway. One implant includes a body having adjacent regions of differing cross-sectional dimensions configured to anchor the implant and/or stabilize at least a portion of the flow path through the implant. One method involves inserting a fiber optic in an eye, locating a distal end of the fiber optic at a physiologic outflow pathway through which aqueous humor drains from an anterior chamber of the eye, and delivering a material comprising a therapeutic agent along the fiber optic and into the physiologic outflow pathway.
摘要:
A method of fabricating optical energy collection and conversion devices using carbon nanotubes (CNTs), and a method of anchoring CNT's into thin polymeric layers is disclosed. The basic method comprises an initial act of surrounding a plurality of substantially aligned nanostructures within at least one fluid layer of substantially uniform thickness such that a first end of the plurality of nanostructures protrudes from the fluid layer. Next, the fluid layer is altered to form an anchoring layer, thereby fastening the nanostructures within the primary anchoring layer with the first ends of the nanostructures protruding from a first surface of the primary anchoring layer. Finally, a portion of the anchoring layer is selectively removed such that a second end of the nanostructures is exposed and protrudes from the anchoring layer. The resulting product is an optically absorbent composite material having aligned nanostructures protruding from both sides of an anchoring layer.
摘要:
A device and method for three-dimensional (3-D) imaging using a defocusing technique is disclosed. The device comprises a lens, a central aperture located along an optical axis for projecting an entire image of a target object, at least one defocusing aperture located off of the optical axis, a sensor operable for capturing electromagnetic radiation transmitted from an object through the lens and the central aperture and the at least one defocusing aperture, and a processor communicatively connected with the sensor for processing the sensor information and producing a 3-D image of the object. Different optical filters can be used for the central aperture and the defocusing apertures respectively, whereby a background image produced by the central aperture can be easily distinguished from defocused images produced by the defocusing apertures.
摘要:
Described is a method and apparatus for obtaining additional information from an object and a method for surface imaging and three-dimensional imaging. Single lens, single aperture, single sensor system and stereo optic systems are enhanced via selective filtering, use of defocusing information, use of an addressable pattern, image matching, and combinations thereof.
摘要:
The present invention satisfies the long felt need for a more compact and durable valve which may be formed in situ. The present invention provides a self-deployable valve system, a method of delivery, and a method of manufacturing for the self-deployable valve system. The present invention delivers the necessary components for forming a complete valve system in situ. The collapsed subcomponents of the system lack any functional characteristics commonly associated with a valve before being expanded. However, once expanded, the system is transformed into a competent valve for use in a wide variety of applications.