Abstract:
A method of image sensor package fabrication includes providing an image sensor, including a pixel array disposed in a semiconductor material, and a transparent shield adhered to the semiconductor material. The pixel array is disposed between the semiconductor material and the transparent shield. The method further includes removing portions of the transparent shield to form recessed regions in the transparent shield, where lateral bounds of the transparent shield extend beyond lateral bounds of the pixel array, and wherein the recessed regions are disposed in portions of the transparent shield that extend beyond the lateral bounds of the pixel array. The recessed regions are filled with a light blocking layer.
Abstract:
An image sensor includes a pixel array with a plurality of pixels arranged in a semiconductor layer. A color filter array including a plurality of groupings of filters is disposed over the pixel array. Each filter is optically coupled to a corresponding one of the plurality of pixels. Each one of the plurality of groupings of filters includes a first, a second, a third, and a fourth filter having a first, a second, the second, and a third color, respectively. A metal layer is disposed over the pixel array and is patterned to include a metal mesh having mesh openings with a size and pitch to block incident light having a fourth color from reaching the corresponding pixel. The metal layer is patterned to include openings without the metal mesh to allow the incident light to reach the other pixels.
Abstract:
An image sensor includes first and second pluralities of photodiodes interspersed among each other in a semiconductor substrate. Incident light is to be directed through a surface of the semiconductor substrate into the first and second pluralities of photodiodes. The first plurality of photodiodes has greater sensitivity to the incident light than the second plurality of photodiodes. A metal film layer is disposed over the surface of the semiconductor substrate over the second plurality of photodiodes and not over the first plurality of photodiodes. A metal grid is disposed over the surface of the semiconductor substrate, and includes a first plurality of openings through which the incident light is directed into the first plurality of photodiodes. The metal grid further includes a second plurality of openings through which the incident light is directed through the metal film layer into the second plurality of photodiodes.
Abstract:
A dual-mode image sensor with a signal-separating CFA includes a substrate including a plurality of photodiode regions and a plurality of tall spectral filters having a uniform first height and for transmitting a first electromagnetic wavelength range. Each of the tall spectral filters is disposed on the substrate and aligned with a respective photodiode region. The image sensor also includes a plurality of short spectral filters for transmitting one or more spectral bands within a second electromagnetic wavelength range. Each of the short spectral filters is disposed on the substrate and aligned with a respective photodiode region. The image sensor also includes a plurality of single-layer blocking filters for blocking the first electromagnetic wavelength range. Each single-layer blocking filter is disposed on a respective short spectral filter. Each single-layer blocking filter and its respective short spectral filter have a combined height substantially equal to the first height.
Abstract:
A color filter array includes a plurality of tiled minimal repeating units, each minimal repeating unit comprising an M×N set of individual filters. Each minimal repeating unit includes a plurality of imaging filters including individual filters having at least first, second, and third photoresponses, and at least one reference filter having a reference photoresponse, wherein the reference filter is positioned among the imaging filters and wherein the reference photoresponse transmits substantially the same percentage of wavelengths that remain unfiltered by filters of a different photoresponse than the incident wavelength. Other embodiments are disclosed and claimed.
Abstract:
A method of forming microlenses for an image sensor having at least one large-area pixel and at least one small-area pixel is disclosed. The method includes forming a uniform layer of microlens material on a light incident side of the image sensor over the large-area pixel and over the small-area pixel. The method also includes forming the layer of microlens material into a first block disposed over the large-area pixel and into a second block disposed over the small-area pixel. A void is also formed in the second block to reduce a volume of microlens material included in the second block. The first and second blocks are then reflowed to form a respective first microlens and second microlens. The first microlens has substantially the same effective focal length as the second microlens.
Abstract:
An image sensor includes a plurality of photosensitive devices arranged in a semiconductor substrate. A planar layer is disposed over the plurality of photosensitive devices in the semiconductor substrate. A plurality of first microlenses comprised of a lens material is arranged in first lens regions on the planar layer. A plurality of lens barriers comprised of the lens material is arranged on the planar layer to provide boundaries that define second lens regions on the planar layer. A plurality of second microlenses comprised of the lens material is formed within the boundaries provided by the plurality of lens barriers that define the second lens regions on the planar layer. The plurality of lens barriers are integrated with respective second microlenses after a reflow process of the plurality of second microlenses.
Abstract:
A color filter array includes a plurality of tiled minimal repeating units, each minimal repeating unit comprising an M×N set of individual filters. Each minimal repeating unit includes a plurality of imaging filters including individual filters having at least first, second, and third photoresponses, and at least one reference filter having a reference photoresponse, wherein the reference filter is positioned among the imaging filters and wherein the reference photoresponse transmits substantially the crosstalk spectrum that is not filtered from light incident on the color filter array by the plurality of imaging filters. Other embodiments are disclosed and claimed.
Abstract:
A method for generating a control signal to control an information technology device includes the following steps: (1) capturing, using an image sensor, a current control image of a light source of a remote controller positioned within a field of view of the image sensor; (2) identifying, within the current control image, a current location of light emitted from the light source; (3) determining movement between (a) the current location of the light emitted from the light source and (b) a previous location of the light emitted from the light source determined from a previously captured image; (4) generating a movement control signal based upon the movement; and (5) sending the movement control signal to the information technology device. The method is executed, for example, by a movement control module of an information technology device input system.
Abstract:
A high dynamic range image sensor pixel includes a short integration photodiode and a long integration photodiode disposed in semiconductor material. The long integration photodiode has a light exposure area that is substantially larger than a light exposure area of the short integration photodiode. The light exposure area of the short integration photodiode has a first doping concentration from a first doping implantation. The light exposure area of the long integration photodiode includes at least one implanted portion having the first doping concentration from the first doping implantation. The light exposure area of the long integration photodiode further includes at least one non-implanted portion photomasked from the first doping implantation such that a combined doping concentration of the implanted and non-implanted portions of the light exposure area of the long integration photodiode is less than the first doping concentration of the light exposure area of the short integration photodiode.