Abstract:
A surgical apparatus is configured to support at least one bone cut for installation of a prosthetic component. The installed prosthetic component will have reduced alignment error. The surgical apparatus is configured to distract a first compartment to a first predetermined load value while allowing a moving support structure to pivot freely. A distraction lock mechanism is then engaged to prevent movement of a distraction mechanism that raises or lowers the moving support structure relative to a fixed support structure. The moving support structure has M-L tilt angle that is measured. A M-L tilt mechanism is engaged to forcibly equalize the first and second compartments. Engaging the M-L tilt mechanism prevents the moving support structure from freely pivoting. The at least one bone cut relates to the first and second compartments equalized and the M-L tilt angle.
Abstract:
A system and method is disclosed herein for measuring bone slope or tilt of a prepared bone surface of the muscular-skeletal system. The system comprises a three-axis accelerometer for measuring position, rotation, and tilt. In one embodiment, the three-axis accelerometer can be housed in a prosthetic component that couples to a prepared bone surface. The system further includes a remote system for receiving, processing, and displaying quantitative measurements from one or more sensors. A bone is placed in extension. The three-axis accelerometer is referenced to a bone landmark of the bone when the bone is in extension. The three-axis accelerometer is then coupled to the prepared bone surface with the bone in extension. The slope or tilt of the bone surface is measured. In the example, the slope or tilt of the bone surface corresponds to at least one surface of the prosthetic component attached thereto.
Abstract:
A system is disclosed herein for providing a kinetic assessment and preparation of a prosthetic joint comprising one or more prosthetic components. The system comprises a prosthetic component including sensors and circuitry configured to measure load, position of load, and joint alignment. The system further includes a remote system for receiving, processing, and displaying quantitative measurements from the sensors. The kinetic assessment measures joint alignment under loading that will be similar to that of a final joint installation. The kinetic assessment can use trial or permanent prosthetic components. Furthermore, adjustments can be made to the applied load magnitude, position of load, and joint alignment by various means to fine-tune an installation. The kinetic assessment increases both performance and reliability of the installed joint by reducing error that is introduced by elements that load or modify the joint dynamics not taken into account by prior assessment methods.
Abstract:
A distractor suitable for measuring a force, pressure, or load applied by the muscular-skeletal system is disclosed. An insert couples to the distractor. The insert has at least one articular surface allowing movement of the muscular-skeletal system when the distractor is inserted thereto. The insert can be a passive insert having no measurement devices. A sensor array and electronics are housed within the distractor. The distractor can dynamically distract the muscular-skeletal system. A handle of the distractor can be rotated to increase or decrease the spacing between support structures. The measurement system comprises a sensor array and electronic circuitry. In one embodiment, the electronic circuitry is coupled to the sensor array by a unitary circuit board or substrate. The sensors can be integrated into the unitary circuit board. For example, the sensors can comprise elastically compressible capacitors or piezo-resistive devices. The distractor wirelessly couples to a remote system for providing position and magnitude measurement data of the force, pressure, or load being measured.
Abstract:
A surgical apparatus is configured to support at least one bone cut for installation of a prosthetic component. The installed prosthetic component will have reduced alignment error. The surgical apparatus is configured to distract a first compartment to a first predetermined load value while allowing a moving support structure to pivot freely. A distraction lock mechanism is then engaged to prevent movement of a distraction mechanism that raises or lowers the moving support structure relative to a fixed support structure. The moving support structure has M-L tilt angle that is measured. A M-L tilt mechanism is engaged to forcibly equalize the first and second compartments. Engaging the M-L tilt mechanism prevents the moving support structure from freely pivoting. The at least one bone cut relates to the first and second compartments equalized and the M-L tilt angle.
Abstract:
A medical system comprising a first medical device, a second medical device, and a computer. The first medical device is configured to be placed beneath the dermis. The first medical device comprises an enclosure comprising non-electrically conductive material. A cap couples to the enclosure and is configured to seal the enclosure. The enclosure houses electronic circuitry configured to measure one or more parameter or provide a therapy. The cap couples to the ground of the electronic circuitry. The first medical device includes a dual band antenna. A first antenna is configured to operate within a first frequency band below 1 gigahertz. The second antenna is configured to operate at a frequency above 1 gigahertz. The second medical device is configured to transmit a radio frequency signal to the first medical device. The first medical device is configured to harvest the energy received from the radio frequency signal to enable the electronic circuitry and perform at least one task.
Abstract:
An orthopedic system configured for use in a pre-operative, intra-operative, and post-operative assessment. The orthopedic system comprises a first screw, a second screw, a first device, a second device, and a computer. The first device and the second device are respectively coupled to a first bone and a second bone of a musculoskeletal system. The first and second devices each include electronic circuitry, one or more sensors, and an IMU. A bracket, wrap, or sleeve can be used to hold the first and second devices to the musculoskeletal system. The first and second devices are configured to send measurement data to a computer. The first and second devices each have an antenna system. Electronic circuitry in the first or second devices are configured to harvest energy from a received radio frequency signal to recharge a battery to maintain operation.
Abstract:
A bone cut system comprising a distractor, one or more drill guides, one or more bone cutting jigs, a computer, and a display. The distractor includes electronic circuitry configured to control a measurement process and transmit measurement data. The distractor can include a magnetic distance sensor, a magnetic angle sensor, and load sensors configured to measure a distraction distance, medial-lateral angle, load magnitude applied to the distractor, and position of load in real-time. The distractor equalizes a medial and lateral compartment of a knee joint in flexion or extension at a predetermined loading. Guide holes are drilled to support cuttings with the medial and lateral compartments equalized. The distractor is configured to support one or more bone cuts using cutting jigs coupled to the guide holes that supports installation of a prosthetic component in alignment with a mechanical axis of a leg.
Abstract:
A system is disclosed herein for providing a kinetic assessment and preparation of a prosthetic joint comprising one or more prosthetic components. The system comprises a prosthetic component including sensors and circuitry configured to measure load, position of load, and joint alignment. The system further includes a remote system for receiving, processing, and displaying quantitative measurements from the sensors. The kinetic assessment measures joint alignment under loading that will be similar to that of a final joint installation. The kinetic assessment can use trial or permanent prosthetic components. Furthermore, adjustments can be made to the applied load magnitude, position of load, and joint alignment by various means to fine-tune an installation. The kinetic assessment increases both performance and reliability of the installed joint by reducing error that is introduced by elements that load or modify the joint dynamics not taken into account by prior assessment methods.
Abstract:
A surgical apparatus configured to be placed in the musculoskeletal system to precisely separate a first bone from a second bone. The surgical apparatus has one or more sensors to measure one or more parameters and supports one or more bone cuts for installing a prosthetic component. The surgical apparatus has three distraction mechanisms configured to increase or decrease a height between a first support structure and a second support structure. A tilt mechanism comprises at least one of the three distraction mechanisms. Each distraction mechanism is supported by at least two guide shafts such that movement of each distraction mechanism is aligned by the corresponding at least two guide shafts and loading is supported by the corresponding at least two guide shafts.