摘要:
Memory devices having improved TPD characteristics and methods of making the memory devices are provided. The memory devices contain two or more memory cells on a semiconductor substrate and bit line dielectrics between the memory cells. The bit line dielectrics can extend into the semiconductor. The memory cell contains one or more charge storage nodes, a first poly gate, a pair of first bit lines, and a pair of second bit lines. The second bit line can be formed at a higher energy level, a higher concentration of dopants, or a combination thereof compared to an energy level and a concentration of dopants of the first bit line.
摘要:
Methods of selectively forming metal silicides on a memory device are provided. The methods can include forming a mask layer over the memory device; forming a patterned resist over the mask layer; removing upper portions of the patterned resist; forming a patterned mask layer by removing portions of the mask layer that are not covered by the patterned resist; and forming metal silicides on the memory device by a chemical reaction of a metal layer formed on the memory device with portions of the memory device that are not covered by the patterned mask layer. By preventing silicidation of underlying silicon containing layers/components of the memory device that are covered by the patterned mask layer, the methods can selectively form the metal silicides on the desired portions of the memory device.
摘要:
Methods for fabricating flash memory devices are provided. In accordance with an exemplary embodiment of the invention, a method for fabricating a memory device comprises forming a first gate stack and a second gate stack overlying a substrate. A trench is etched into the substrate between the first gate stack and the second gate stack. A first impurity doped region is formed within the substrate underlying the trench.
摘要:
Methods of selectively forming metal silicides on a memory device are provided. The methods can include forming a mask layer over the memory device; forming a patterned resist over the mask layer; removing upper portions of the patterned resist; forming a patterned mask layer by removing portions of the mask layer that are not covered by the patterned resist; and forming metal silicides on the memory device by a chemical reaction of a metal layer formed on the memory device with portions of the memory device that are not covered by the patterned mask layer. By preventing silicidation of underlying silicon containing layers/components of the memory device that are covered by the patterned mask layer, the methods can selectively form the metal silicides on the desired portions of the memory device.
摘要:
A method for forming a memory device is provided. A nitride layer is formed over a substrate. The nitride layer and the substrate are etched to form a trench. The nitride layer is trimmed on opposite sides of the trench to widen the trench within the nitride layer. The trench is filled with an oxide material. The nitride layer is stripped from the memory device, forming a mesa above the trench.
摘要:
Semiconductor devices with improved data retention are formed by depositing an undoped oxide liner on spaced apart transistors followed by in situ deposition of a BPSG layer. Embodiments include depositing an undoped silicon oxide liner derived from TEOS, as at a thickness of 400 Å to 600 Å, on transistors of a non-volatile semiconductor device, as by sub-atmospheric chemical vapor deposition, followed by depositing the BPSG layer in the same deposition chamber.
摘要:
According to one exemplary embodiment, a structure comprises a substrate. The structure further comprises at least one memory cell situated on the substrate. The at least one memory cell may be, for example, a SONOS flash memory cell. The structure further comprises an interlayer dielectric layer situated over at least one memory cell and over the substrate. The structure further comprises a first antireflective coating layer situated over the interlayer dielectric layer. According to this exemplary embodiment, the structure further comprises a second antireflective coating layer situated directly over the first anti reflective coating layer. Either the first antireflective coating layer or second antireflective coating layer must be a silicon-rich layer. The first antireflective coating layer and the second antireflective coating may form a UV radiation blocking layer having a UV transparency less than approximately 1.0 percent, for example.
摘要:
One aspect of the invention relates to a method of removing a hard mask from a surface, especially a silicon surface. The hard mask is removed by first applying a sacrificial coating and then plasma etching. The sacrificial material fills pattern gaps formed using the hard mask and protects insulators, such as oxides, within those pattern gaps. The sacrificial material is removed together with the hard mask by the plasma etching. The invention provides a process for removing hard masks from silicon layers without significantly damaging either the silicon layer or any exposed oxides and can be applied in a variety of integrated circuit device manufacturing processes, such as patterning the floating gate layer of a flash memory device.
摘要:
STI (shallow trench isolation) structures are formed for a flash memory device fabricated within an semiconductor substrate comprised of a core area having an array of core flash memory cells fabricated therein and comprised of a periphery area having logic circuitry fabricated therein. A first set of STI (shallow trench isolation) openings within the core area are etched through the semiconductor substrate, and a second set of STI (shallow trench isolation) openings within the periphery area are etched through the semiconductor substrate. A core active device area of the semiconductor substrate within the core area is surrounded by the first set of STI openings, and a periphery active device area of the semiconductor substrate within the periphery area is surrounded by the second set of STI openings. Dielectric liners are formed at sidewalls of the first and second sets of STI openings with reaction of the semiconductor substrate at the sidewalls of the STI openings such that top corners of the semiconductor substrate of the core and periphery active device areas adjacent the STI openings are rounded. A trench dielectric material is deposited to fill the STI openings. In addition, the top corners of the periphery active device area are exposed by etching portions of the sidewalls of the second set of STI structures in a dip-off etch. The exposed top corners of the periphery active device area are further rounded after additional thermal oxidation of the exposed top corners of the periphery active device area. The rounded corners of the core and periphery active device areas result in minimized leakage current through a flash memory cell fabricated within the core active device area and through a MOSFET fabricated within the periphery active device area.
摘要:
A method for rapid anisotropic dry etching of oxide compounds in high aspect ratio openings which etching method is highly selective to metal salicides and which method employs plasma gases of CHF.sub.3, N.sub.2 and a high flow rate of He at a high pressure and products made by the process.