Abstract:
Semiconductor devices with high-K/metal gates are formed with spacers that are substantially resistant to subsequent etching to remove an overlying spacer, thereby avoiding replacement and increasing manufacturing throughput. Embodiments include forming a high-K/metal gate, having an upper surface and side surfaces, over a substrate, e.g., a SOI substrate, and sequentially forming, on the side surfaces of the high-K/metal gate, a first spacer of a non-oxide material, a second spacer, of a material different from that of the first spacer, and a third spacer, of a material different from that of the second spacer. After formation of source and drain regions, e.g., epitaxially grown silicon-germanium, the third spacer is etched with an etchant, such as hot phosphoric acid, to which the second spacer is substantially resistant, thereby avoiding replacement.
Abstract:
Stress enhanced MOS transistors are provided. A semiconductor device is provided that comprises a semiconductor-on-insulator structure, a gate insulator layer, a source region, a drain region and a conductive gate overlying the gate insulator layer. The semiconductor-on-insulator structure comprises: a substrate, a semiconductor layer, and an insulating layer disposed between the substrate and the semiconductor layer. The semiconductor layer has a first surface, a second surface and a first region. The gate insulator layer overlies the first region, the conductive gate overlies the gate insulator layer, and the source region and the drain region overlie the first surface and comprise a strain-inducing epitaxial layer
Abstract:
Methods for protecting gate stacks during fabrication of semiconductor devices and semiconductor devices fabricated from such methods are provided. In an embodiment, a method for fabricating a semiconductor device comprises forming a gate stack comprising a first gate stack-forming layer overlying a semiconductor substrate and forming first sidewall spacers about sidewalls of the gate stack. After the step of forming the first sidewall spacers, a portion of the first gate stack-forming layer is exposed. The exposed portion is anisotropically etched using the gate stack and the first sidewall spacers as an etch mask. Second sidewall spacers are formed adjacent the first sidewall spacers after the step of anisotropically etching.
Abstract:
When forming sophisticated semiconductor devices including transistors with sophisticated high-k metal gate electrode structures and a strain-inducing semiconductor alloy, transistor uniformity and performance may be enhanced by providing superior growth conditions during the selective epitaxial growth process. To this end, a semiconductor material may be preserved at the isolation regions in order to avoid the formation of pronounced shoulders. Furthermore, in some illustrative embodiments, additional mechanisms are implemented in order to avoid undue material loss, for instance upon removing a dielectric cap material and the like.
Abstract:
A low energy surface is formed by a high temperature anneal of the surfaces of trenches on each side of a gate stack. The material of the semiconductor layer reflows during the high temperature anneal such that the low energy surface is a crystallographic surface that is at a non-orthogonal angle with the surface normal of the semiconductor layer. A lattice mismatched semiconductor material is selectively grown on the semiconductor layer to fill the trenches, thereby forming embedded lattice mismatched semiconductor material portions in source and drain regions of a transistor. The embedded lattice mismatched semiconductor material portions can be in-situ doped without increasing punch-through. Alternately, a combination of intrinsic selective epitaxy and ion implantation can be employed to form deep source and drain regions.
Abstract:
The present disclosure provides manufacturing techniques in which sophisticated high-k metal gate electrode structures may be formed in an early manufacturing stage on the basis of a selectively applied threshold voltage adjusting semiconductor alloy. In order to reduce the surface topography upon patterning the deposition mask while still allowing the usage of well-established epitaxial growth recipes developed for silicon dioxide-based hard mask materials, a silicon nitride base material may be used in combination with a surface treatment. In this manner, the surface of the silicon nitride material may exhibit a silicon dioxide-like behavior, while the patterning of the hard mask may be accomplished on the basis of highly selective etch techniques.
Abstract:
A method of fabricating a semiconductor device with back side conductive plugs is provided here. The method begins by forming a gate structure overlying a semiconductor-on-insulator (SOI) substrate. The SOI substrate has a support layer, an insulating layer overlying the support layer, an active semiconductor region overlying the insulating layer, and an isolation region outboard of the active semiconductor region. A first section of the gate structure is formed overlying the isolation region and a second section of the gate structure is formed overlying the active semiconductor region. The method continues by forming source/drain regions in the active semiconductor region, and thereafter removing the support layer from the SOI substrate. Next, the method forms conductive plugs for the gate structure and the source/drain regions, where each of the conductive plugs passes through the insulating layer.
Abstract:
When forming sophisticated semiconductor devices on the basis of high-k metal gate electrode structures, which are to be provided in an early manufacturing stage, the encapsulation of the sensitive gate materials may be improved by reducing the depth of or eliminating recessed areas that are obtained after forming sophisticated trench isolation regions. To this end, after completing the STI module, an additional fill material may be provided so as to obtain the desired surface topography and also preserve superior material characteristics of the trench isolation regions.
Abstract:
A low energy surface is formed by a high temperature anneal of the surfaces of trenches on each side of a gate stack. The material of the semiconductor layer reflows during the high temperature anneal such that the low energy surface is a crystallographic surface that is at a non-orthogonal angle with the surface normal of the semiconductor layer. A lattice mismatched semiconductor material is selectively grown on the semiconductor layer to fill the trenches, thereby forming embedded lattice mismatched semiconductor material portions in source and drain regions of a transistor. The embedded lattice mismatched semiconductor material portions can be in-situ doped without increasing punch-through. Alternately, a combination of intrinsic selective epitaxy and ion implantation can be employed to form deep source and drain regions.
Abstract:
Improved semiconductor devices comprising metal gate electrodes are formed with reduced performance variability by reducing the initial high dopant concentration at the top portion of the silicon layer overlying the metal layer. Embodiments include reducing the dopant concentration in the upper portion of the silicon layer, by implanting a counter-dopant into the upper portion of the silicon layer, removing the high dopant concentration portion and replacing it with undoped or lightly doped silicon, and applying a gettering agent to the upper surface of the silicon layer to form a thin layer with the gettered dopant, which layer can be removed or retained.