Abstract:
Disclosed are a thin film structure and an electronic device including the same. The disclosed thin film structure includes a dielectric material layer between a first material layer and a second material layer. The dielectric material layer includes a dopant in a matrix material having a fluorite structure. The dielectric material layer is uniformly doped with a low concentration of the dopant, and has ferroelectricity.
Abstract:
The present disclosure relates to oxide semiconductor transistors, methods of manufacturing the same, and/or memory devices including the oxide semiconductor transistors. The oxide semiconductor transistor includes first and second compound layers provided on a substrate, a channel layer in contact with the first and second compound layers, a first electrode facing a portion of the channel layer, a second electrode facing the first compound layer with the channel layer therebetween, and a third electrode facing the second compound layer with the channel layer therebetween. An oxygen concentration of a region of the channel layer facing the first electrode is greater than that of the remaining regions of the channel layer. A buffer layer may further be provided between the channel layer and the second and third electrodes. The first and second compound layers may include oxygen and a metal.
Abstract:
Provided is a semiconductor device including a first semiconductor transistor including a semiconductor channel layer, and a metal-oxide semiconductor channel layer, and having a structure in which a second semiconductor transistor is stacked on the top of the first semiconductor transistor. A gate stack of the second semiconductor transistor and the top of a gate stack of the first semiconductor transistor may overlap by greater than or equal to 90%. The first semiconductor transistor and the second semiconductor transistor may have a similar level of operation characteristics.
Abstract:
Provided is a ferroelectric semiconductor device including a source and a drain having different polarities. The ferroelectric semiconductor may include a ferroelectric including zirconium oxide (ZrO2), hafnium oxide (HfO2), and/or hafnium-zirconium oxide (HfxZr1−xO, 0
Abstract:
A layout of original pattern is rotated in a rotational direction to form a layout of rotation pattern. Vertices and segment points of the layout of rotation pattern are matched with ones of the reference points closest thereto, and the matched reference points are connected to form a layout of first modification pattern. A region of the layout of first modification pattern is enlarged to form a layout of second modification pattern. A layout of reference pattern having the same direction as the layout of rotation pattern is formed. A layout of target pattern is formed based on a region where the layouts of reference pattern and second modification pattern overlap. An optical proximity correction is performed on the layout of target pattern to form a layout of third modification pattern, which is rotated in a reverse rotational direction to form a layout of final pattern.
Abstract:
A ferroelectric thin-film structure includes at least one first atomic layer and at least one second atomic layer. The first atomic layer includes a first dielectric material that is based on an oxide, and the second atomic layer includes both the first dielectric material and a dopant that has a bandgap greater than a bandgap of the dielectric material.
Abstract:
A neuromorphic apparatus includes a three-dimensionally-stacked synaptic structure, and includes a plurality of unit synaptic modules, each of the plurality of unit synaptic modules including a plurality of synaptic layers, each of the plurality of synaptic layers including a plurality of stacked layers, and each of the plurality of unit synaptic modules further including a first decoder interposed between two among the plurality of synaptic layers. The neuromorphic apparatus further includes a second decoder that provides a level selection signal to the first decoder included in one among the plurality of unit synaptic modules to be accessed, and a third decoder that generates an address of one among a plurality of memristers to be accessed in a memrister array of one among the plurality of synaptic layers included in the one among the plurality of unit synaptic modules to be accessed.
Abstract:
A method of preparing a ZnO nanowire, and a ZnO nanowire prepared by the method are provided. The method of preparing a ZnO nanowire includes: preparing a zinc chalcogenide solution by dissolving zinc chalcogenide in a solvent; applying the zinc chalcogenide solution onto a substrate; drying the zinc chalcogenide solution applied onto the substrate; and annealing the substrate in the presence of oxygen after the drying the zinc chalcogenide solution.
Abstract:
The present disclosure relates to oxide semiconductor transistors, methods of manufacturing the same, and/or memory devices including the oxide semiconductor transistors. The oxide semiconductor transistor includes first and second compound layers provided on a substrate, a channel layer in contact with the first and second compound layers, a first electrode facing a portion of the channel layer, a second electrode facing the first compound layer with the channel layer therebetween, and a third electrode facing the second compound layer with the channel layer therebetween. An oxygen concentration of a region of the channel layer facing the first electrode is greater than that of the remaining regions of the channel layer. A buffer layer may further be provided between the channel layer and the second and third electrodes. The first and second compound layers may include oxygen and a metal.
Abstract:
Disclosed are a semiconductor device, a method of manufacturing the same, and an electronic element and an electronic apparatus each including the semiconductor device. The semiconductor device may include a substrate, a channel layer on the substrate, a first electrode and a second electrode on two opposite ends of the channel layer, respectively, and spaced apart from each other, a gate electrode on the channel layer and spaced apart from the first electrode and the second electrode, a gate dielectric material provided between the channel layer and the gate electrode, and a chalcogen compound layer being at least one of between the gate dielectric material and the channel layer, between the first electrode and the channel layer, and between the second electrode and the channel layer.