Abstract:
An electronic device includes a semiconductor memory. The semiconductor memory includes a bit line, a word line crossing the bit line, and a memory cell coupled to and disposed between the bit line and the word line. In a read operation, when the word line, which is in a precharged state, is floated, the bit line is driven to increase a voltage level of the bit line, and stopped when the memory cell is turned on.
Abstract:
A semiconductor memory device includes memory cells coupled to a word line; and a peripheral circuit configured to read first to kth page data from the memory cells by sequentially applying first to kth test voltages to the word line, where k is a natural number greater than 3, wherein the peripheral circuit is configured to gradually reduce times during which the first to kth test voltages are applied to the word line.
Abstract:
A semiconductor memory device and a method of operating the same are provided. The method of operating the semiconductor memory device includes detecting a first group of changed bits between first and second page data, by comparing the first and second page data, which are read out using first and second test voltages from the memory cells, respectively, detecting a second group of changed bits between the second page data and a third page data, by comparing the second page data with the third page data read out from the memory cells using a third test voltage, comparing the numbers of the first and second groups of changed bits, and determining one of the first to third test voltages as a read voltage according to the comparing of the numbers of the first and second groups of changed bits.
Abstract:
A nonvolatile memory device includes a memory cell array including a data cell area, and a mode cell area that stores write mode information of the data cell area, a mode information storage block storing previous write mode information read out from the mode cell area in a previous read operation, and a control logic reading out the write mode information from the mode cell area comparing the read-out write mode information and the previous write mode information, and reading the data cell area in a read mode selected based on a comparison result.
Abstract:
A memory system according to an embodiment of the present invention may include a semiconductor memory device including a plurality of memory areas, and a controller suitable for writing data to the semiconductor memory device and reading data from the semiconductor memory device. The controller provides a combined seed, which is used to copy data in a first memory area to a second memory area, to the semiconductor memory device, the combined seed being obtained by performing an operation on a de-randomizing seed corresponding to the first memory area and a randomizing seed corresponding to the second memory area.
Abstract:
A method of operating a data storing system includes performing a first copy operation of copying data stored in memory cells of first to nth word lines (n>1, and n is an integer) of a first memory block to first to nth pages of a word line of a second memory block; if a power is turned off, searching for a first erase page, which is recognized to be in an erase state, among the pages of the second memory block when the power comes back on; performing a first map-update on copied pages of the second memory block except for a set number of pages copied right before the first erase page; and performing a second copy operation from the first erase page.
Abstract:
Provided is a method for reducing output data noise of a semiconductor apparatus which includes a plurality of output buffers to output data. The method includes the steps of: driving low data to a specific output buffer among the plurality of output buffers, and driving data transiting from a high level to a low level to the other output buffers; and measuring the magnitude of data noise occurring in output data of the specific output buffer, and deciding slew rates of the plurality of output buffers based on the measurement result.