Abstract:
An integrated circuit die includes a substrate having a first layer of semiconductor material, a layer of dielectric material on the first layer of semiconductor material, and a second layer of semiconductor material on the layer of dielectric material. An extended channel region of a transistor is positioned in the second layer of semiconductor material, interacting with a top surface, side surfaces, and potentially portions of a bottom surface of the second layer of semiconductor material. A gate dielectric is positioned on a top surface and on the exposed side surface of the second layer of semiconductor material. A gate electrode is positioned on the top surface and the exposed side surface of the second layer of semiconductor material.
Abstract:
A method of making a structurally stable SiGe-on-insulator FinFET employs a silicon nitride liner to prevent de-stabilizing oxidation at the base of a SiGe fin. The silicon nitride liner blocks access of oxygen to the lower corners of the fin to facilitate fabrication of a high-concentration SiGe fin. The silicon nitride liner is effective as an oxide barrier even if its thickness is less than about 5 nm. Use of the SiN liner provides structural stability for fins that have higher germanium content, in the range of 25-55% germanium concentration.
Abstract:
The present disclosure is directed to a device and method for reducing the resistance of the middle of the line in a transistor. The transistor has electrical contacts formed above, and electrically connected to, the gate, drain and source. The electrical contact connected to the gate includes a tungsten contact member deposited over the gate, and a copper contact deposited over the tungsten contact member. The electrical contacts connected to the drain and source include tungsten portions deposited over the drain and source regions, and copper contacts deposited over the tungsten portions.
Abstract:
A method for manufacturing a microelectronic device with transistors of different types having raised source and drain regions and different overlap regions.
Abstract:
A method for making a semiconductor device may include forming, above a substrate, a plurality of laterally spaced-apart semiconductor fins, and forming regions of a first dielectric material between the laterally spaced-apart semiconductor fins. The method may further include selectively removing at least one intermediate semiconductor fin from among the plurality of semiconductor fins to define at least one trench between corresponding regions of the first dielectric material, and forming a region of a second dielectric material different than the first dielectric in the at least one trench to provide at least one isolation pillar between adjacent semiconductor fins.
Abstract:
A method for making a semiconductor device is provided. Raised source and drain regions are formed with a tensile strain-inducing material, after thermal treatment to form source drain extension regions, to thereby preserve the strain-inducing material in desired substitutional states.
Abstract:
A method for making a semiconductor device may include forming a first semiconductor layer on a substrate comprising a first semiconductor material, forming a second semiconductor layer on the first semiconductor layer comprising a second semiconductor material, and forming mask regions on the second semiconductor layer and etching through the first and second semiconductor layers to define a plurality of spaced apart pillars on the substrate. The method may further include forming an oxide layer laterally surrounding the pillars and mask regions, and removing the mask regions and forming inner spacers on laterally adjacent corresponding oxide layer portions atop each pillar. The method may additionally include etching through the second semiconductor layer between respective inner spacers to define a pair of semiconductor fins of the second semiconductor material from each pillar, and removing the inner spacers and forming an oxide beneath each semiconductor fin.