Abstract:
An apparatus and method for locating a remote station operating in analog mode, and that may not have a sense of network time, using an inverted GPS approach. The invention also enables remote stations operating in analog mode that do not know true GPS time to determine their own location. A time stamp, reflecting the approximate time a satellite range measurement is made, is assigned to the measurement at either the remote station or elsewhere in the network. The difference between true GPS network time and the measurement time is treated as a variable “error” in measurement, the length of which is unknown. This variable error is determined and used in determining the physical location of the remote station.
Abstract:
A system and method for determining a position of a mobile wireless transceiver. The inventive system merges GPS position location and wireless communication technologies to achieve a precise position location in dense urban and other environments when line-of-sight to the satellites is somewhat obscured. The inventive method uses signals from only two GPS satellites and the serving terrestrial base station. In a most general sense, the inventive method includes the steps of receiving at a base station a first signal transmitted from a first GPS satellite and a second signal transmitted from a second GPS satellite. The mobile transceiver is adapted to receive these GPS signals as well and transmit a third signal to the base station in response thereto. The base station receives the third signal and uses it to calculate the position of the wireless unit. In a specific implementation, the base station sends aiding information to the wireless unit. The aiding information is used by the wireless unit to quickly acquire the signals transmitted by the first and second satellites and includes satellite identification information, Doppler shift information, and range information between the base station and the satellites. On the acquisition by the wireless unit of the signals transmitted by the first and second satellites, the wireless unit wireless unit calculates the range between the wireless unit and each of the satellites. This range information is transmitted back to the base station along with information as to the time at which the measurement was made. In a CDMA implementation, the time at which the wireless unit transmits the third signal to the base station is known by the base station. The delay in the receipt of the third signal provides an indication to the base station as to the range between the base station and the wireless unit. The base station utilizes information known as to its position, the position of the first and second satellites relative to the wireless unit and the range to the wireless unit from the base station to calculate the position of the wireless unit.
Abstract:
A method and apparatus for simulating signal interference in one communication channel within a communication system, such as cellular or wireless subscriber telephone and/or data systems. The communication system may be of a cellular type in which users from a plurality of cells communicate information signals between one another using at least one base station and code division multiple access (CDMA) spread spectrum type communication signals. The base station is included in a first of the cells and has a transmitter from which information is transmitted to subscriber units over at least one communication channel. The disclosed method includes the step of determining a first composite signal energy associated with signal transmission from the base station transmitter over a first set of simulated communication channels. The simulation method further contemplates estimating a first average data rate for the first composite signal energy. Signal power transmitted over the one communication channel is adjusted in accordance with a first interference signal which is based on the first composite signal energy and first average data rate. In a preferred implementation, a determination is also made of a second composite signal energy associated with signal transmissions from base station transmitters in other cells over a second set of simulated communication channels. An estimate is also made of a second average data rate for the second composite signal energy to enable generation of a second interference signal.
Abstract:
Systems and methods are provided for transceiving information via alternate bandwidths using a shared baseband processor. The transmission method selects clock sampling frequencies, for example a first clock frequency (l×F1), or a second clock frequency (k×F1), where k>l. Digital information is processed using the selected clock sampling frequency and a baseband signal is generated. Regardless of the clock sampling frequency selected, the baseband signal may have the same number of subcarrier frequencies. The baseband signal is converted into a radio frequency (RF) signal having a data rate responsive to a selected clock frequency, and transmitted. More explicitly, a first baseband signal is generated having a first data rate in response to selecting the first clock frequency. A second baseband signal having a second data rate greater than the first data rate, may be generated in response to selecting the second clock frequency.
Abstract:
Out of band (OOB) communication facilitates femtocell operation. One or more proximity agent provides out of band communication with nodes (e.g., mobile client devices) to provide assistance in or otherwise facilitate femtocell discovery, reselection, and/or interference mitigation. Out of band communication techniques provide for low power discovery, association, and communication as compared to corresponding femtocell or cellular network communication techniques. An OOB proximity agent is provided in association with a femtocell to provide transmit power level control with respect to the femtocell. In operation, if a client device searches for and finds an OOB proximity agent, it will find a femtocell, thereby avoiding a need to aggressively search for femtocells.
Abstract:
3D image data can be modified based on user preference data received from a user. The user preference data may be received at a first device and used to adjust 3D image data generated by the first device for presentation by a display device, or the first device may receive the user preference data and transmit it to a display device such that the display device may adjust the 3D image data based on the user preference data. The 3D image data may be adjusted based on user preference data to support presentation of 3D imagery on the display device in a manner desired by a user. 3D user viewing preferences may include an amount of pop-out effect in images, a stereo baseline of images, a depth range of images, a spatial distribution of images, a degree of depth sharpness in images, or specification of a user's dominant eye.
Abstract:
In general, techniques are described for encapsulating three dimensional video data in accordance with a transport protocol. As one example, an apparatus comprising a multimedia processing module, a transport protocol module and a wireless module implement the techniques. The multimedia processing module generates a video data segment, an audio data segment and a depth data segment of 3D video content. The transport protocol module encapsulates each of the video data, audio data and depth data segments in different ones of a plurality of packets according to a transport protocol and adds metadata to at least one of the plurality of packets for enhancing playback of the 3D video content. The wireless module transmits the packets to a 3D display device external from the apparatus.
Abstract:
Systems, methods, devices, and computer program products are described for supporting macrocell-to-femtocell hand-ins of active macro communications for mobile access terminals. A femto-proxy system is provided including a femtocell and an out-of-band (OOB) proxy. While the femtocell may be addressed by the macro network according to a potentially non-unique identifier (e.g., its PN offset), the OOB proxy is addressable according to a unique OOB identifier (e.g., a Bluetooth device address, BD_ADDR). When the mobile access terminal is in proximity to the femto-proxy system, it detects the OOB proxy and communicates the unique OOB identifier to the core network via the macro network (e.g., as part of a measurement report). The OOB identifier is mapped (e.g., in the core network) to the femtocell, allowing the core network to uniquely identify the appropriate target femtocell for active hand-in.
Abstract:
Systems, methods, devices, and computer program products are described for mitigating macrocell interference during femtocell discovery in a wireless communications system. In one example, a mobile device may be camped on a macrocell. A femtocell transmits out-of-band (OOB) discovery signals to, or receives OOB band discovery signals from, the mobile device to facilitate presence detection. The femtocell may also be configured to use various techniques to transmit in-band beacon bursts (e.g., low or high power beacon bursts) to the mobile device in the macrocell frequency range to trigger the mobile device to perform an inter-frequency scan for cell reselection. The femtocell may transmit communications signals to the mobile device in a femtocell frequency range (different from the macrocell frequency range) after the mobile device has discovered and selected the femtocell.
Abstract:
Systems, methods, devices, and computer program products are described for using an out-of-band (OOB) radio integrated with the femtocell to implement various novel proximity detection techniques. Proximity detection of access terminals (ATs) in the femtocell's access control list (ACL) can be desirable to support femto connectivity and service provision, for example, in context of idle macro-to-femto handoffs, active macro-to-femto hand-ins, etc. Implementations implement OOB proximity detection through multicasting directed proximity request messages to each AT in a femtocell's ACL. Responses to the proximity request message can include identification information used to determine the specific AT that is in proximity.