Abstract:
Implementations disclosed herein provide an apparatus comprising a write pole, and a two-layer front shield formed on the write pole, the front shield comprising, a first dielectric material formed on the first layer of the front shield, an active shield control (ASC) device formed between the two layers of the front shield on the first dielectric material configured to synchronize the response to a magnetomotive force (MMF) of a write pole and the front shield, and a second dielectric material formed on the ASC device, wherein the second layer of the front shield is formed only on top of the second dielectric material and the first layer of the front shield.
Abstract:
A data storage device employing a data writer may configure the data writer with at least a write pole that is separated from a front shield on an air bearing surface. The front shield can be arranged to continuously extend from the air bearing surface a first throat height distal the write pole and a second throat height proximal the write pole with the first and second throat heights being different.
Abstract:
Method and apparatus for managing data in a memory, such as a flash memory array. In accordance with some embodiments, a memory cell is provided with a plurality of available programming states to accommodate multi-level cell (MLC) programming. A control circuit stores a single bit logical value to the memory cell using single level cell (SLC) programming to provide a first read margin between first and second available programming states. The control circuit subsequently stores a single bit logical value to the memory cell using virtual multi-level cell (VMLC) programming to provide a larger, second read margin between the first available programming state and a third available programming state.
Abstract:
A magnetic element can have at least a write pole configured with a write pole tip that has a tip surface oriented at a first angle with respect to an air bearing surface (ABS), a first bevel surface extending from the ABS and oriented at a second angle with respect to the ABS, and a second bevel surface extending from the ABS and oriented at a third angle with respect to the ABS. The first, second, and third angles may be configured to be different and non-orthogonal to each other.
Abstract:
In accordance with one embodiment, an apparatus can be configured that includes a main pole layer of magnetic material; a second layer of magnetic material; a first gap layer of non-magnetic material disposed between the main pole layer and the second layer of magnetic material; a second gap layer of non-magnetic material disposed between the main pole layer and the second layer of magnetic material; and wherein the second gap layer of non-magnetic material is disposed directly adjacent to the second layer of magnetic material. In accordance with one embodiment, this allows the gap to serve as a non-magnetic seed for the second layer of magnetic material. In accordance with one embodiment, this allows the gap to serve as a non-magnetic seed for the second layer of magnetic material. In accordance with one embodiment, a method of manufacturing such a device may also be utilized.
Abstract:
In accordance with one embodiment, a method may be implemented by depositing a non-magnetic gap layer of material above a main pole layer of magnetic material; depositing a sacrificial layer of material above the non-magnetic gap layer of material; etching a portion of the sacrificial layer of material while not entirely removing the sacrificial layer of material; and depositing additional sacrificial material to the etched sacrificial layer.
Abstract:
Programmable metallization memory cells having an active electrode, an opposing inert electrode and a variable resistive element separating the active electrode from the inert electrode. The variable resistive element includes a plurality of alternating solid electrolyte layers and electrically conductive layers. The electrically conductive layers electrically couple the active electrode to the inert electrode in a programmable metallization memory cell. Methods to form the same are also disclosed.
Abstract:
Described are electrodeposition methods, and materials and structures prepared by electrodeposition methods, and devices prepared from the electrodeposited materials.
Abstract:
A recording head includes a bearing surface, a first writer and a first shield structure for the first writer. The recording head also includes a second writer and a second shield structure for the second writer. The recording head further includes a magnetic bridge connecting the first shield structure to the second shield structure at the bearing surface.
Abstract:
A storage device includes a storage medium and a transducer head with two writers positioned to write to a same surface of the storage medium. The two writers are separated from one another along a down-track direction of a data track on the storage medium and independently controllable to write data.