Abstract:
Method and apparatus for managing data in a memory, such as a flash memory array. In accordance with some embodiments, a memory cell is provided with a plurality of available programming states to accommodate multi-level cell (MLC) programming. A control circuit stores a single bit logical value to the memory cell using single level cell (SLC) programming to provide a first read margin between first and second available programming states. The control circuit subsequently stores a single bit logical value to the memory cell using virtual multi-level cell (VMLC) programming to provide a larger, second read margin between the first available programming state and a third available programming state.
Abstract:
A memory device includes a stack of layers comprising a plurality of alternating layers of continuous electrically conductive material word line layers with layers of continuous electrically insulating material. A plurality of vias vertically extend through the stack of layers and a vertical bit line is disposed within each via. A layer of switching material separates the vertical bit line from the stack of layers, thereby forming an array of RRAM cells.
Abstract:
A fault tolerant control line configuration useful in a variety of solid state memories such as but not limited to a flash memory. In accordance with some embodiments, an apparatus includes a plurality of memory cells, and a fault tolerant control line. The control line has an elongated first conductive path connected to each of the plurality of memory cells. An elongated second conductive path is disposed in a parallel, spaced apart relation to the first conductive path. A plurality of conductive support members are interposed between the first and second conductive paths to support the second conductive path above the first conductive path.
Abstract:
Apparatus and method for managing data in a memory, such as but not limited to a flash memory array. In some embodiments, an apparatus includes an array of memory cells and a dual polarity charge pump. The dual polarity charge pump has a positive polarity voltage source which applies a positive voltage to a charge storage device to program a selected memory cell to a first programming state, and a negative polarity voltage source which applies a negative voltage to the charge storage device to program the selected memory cell to a different, second programming state.
Abstract:
Memory arrays that include a first memory cell having a channel; a first insulator; a floating gate; a second insulator; and a control gate, wherein the first insulator is positioned between the channel and the floating gate, the second insulator is positioned between the floating gate and the control gate; and a second memory cell having a channel; a first insulator; a floating gate; a second insulator; and a control gate, wherein the first insulator is positioned between the channel and the floating gate, the second insulator is positioned between the floating gate and the control gate, wherein the first memory cell and the second memory cell are positioned parallel to each other.
Abstract:
A memory device includes a stack of layers comprising a plurality of alternating layers of continuous electrically conductive material word line layers with layers of continuous electrically insulating material. A plurality of vias vertically extend through the stack of layers and a vertical bit line is disposed within each via. A layer of switching material separates the vertical bit line from the stack of layers, thereby forming an array of RRAM cells.
Abstract:
A fault tolerant control line configuration useful in a variety of solid state memories such as but not limited to a flash memory. In accordance with some embodiments, an apparatus includes a plurality of memory cells, and a fault tolerant control line. The control line has an elongated first conductive path connected to each of the plurality of memory cells. An elongated second conductive path is disposed in a parallel, spaced apart relation to the first conductive path. A plurality of conductive support members are interposed between the first and second conductive paths to support the second conductive path above the first conductive path.
Abstract:
Apparatus and method for managing data in a memory, such as but not limited to a flash memory array. In some embodiments, an apparatus includes an array of memory cells and a dual polarity charge pump. The dual polarity charge pump has a positive polarity voltage source which applies a positive voltage to a charge storage device to program a selected memory cell to a first programming state, and a negative polarity voltage source which applies a negative voltage to the charge storage device to program the selected memory cell to a different, second programming state.
Abstract:
Memory arrays that include a first memory cell having a channel; a first insulator; a floating gate; a second insulator; and a control gate, wherein the first insulator is positioned between the channel and the floating gate, the second insulator is positioned between the floating gate and the control gate; and a second memory cell having a channel; a first insulator; a floating gate; a second insulator; and a control gate, wherein the first insulator is positioned between the channel and the floating gate, the second insulator is positioned between the floating gate and the control gate, wherein the first memory cell and the second memory cell are positioned parallel to each other.
Abstract:
Method and apparatus for managing data in a memory, such as a flash memory array. In accordance with some embodiments, a memory cell is provided with a plurality of available programming states to accommodate multi-level cell (MLC) programming. A control circuit stores a single bit logical value to the memory cell using single level cell (SLC) programming to provide a first read margin between first and second available programming states. The control circuit subsequently stores a single bit logical value to the memory cell using virtual multi-level cell (VMLC) programming to provide a larger, second read margin between the first available programming state and a third available programming state.