Abstract:
The semiconductor light emitting device of the present invention emits a blue light component, a green light component, and a red light component. The blue light component is a light component emitted by a first solid light emitting element that emits light having an emission peak in a wavelength range of 430 nm to less than 490 nm, the green light component is light emitted by a second solid light emitting element that emits light having an emission peak in a wavelength range of 360 nm to less than 420 nm that is converted into wavelength-converted light by a green phosphor, and the red light component is light emitted by at least one solid light emitting element selected from the first solid light emitting element and the second solid light emitting element that is converted into wavelength-converted light by a red phosphor. The green phosphor emits green light on the basis of an electronic energy transition of Mn2+.
Abstract:
The semiconductor light emitting device of the present invention emits a blue light component, a green light component, and a red light component. The blue light component is a light component emitted by a first solid light emitting element that emits light having an emission peak in a wavelength range of 430 nm to less than 490 nm, the green light component is light emitted by a second solid light emitting element that emits light having an emission peak in a wavelength range of 360 nm to less than 420 nm that is converted into wavelength-converted light by a green phosphor, and the red light component is light emitted by at least one solid light emitting element selected from the first solid light emitting element and the second solid light emitting element that is converted into wavelength-converted light by a red phosphor. The green phosphor emits green light on the basis of an electronic energy transition of Mn2+.
Abstract:
A chip-type light-emitting semiconductor device includes: a substrate 4; a blue LED 1 mounted on the substrate 4; and a luminescent layer 3 made of a mixture of yellow/yellowish phosphor particles 2 and a base material 13 (translucent resin). The yellow/yellowish phosphor particles 2 is a silicate phosphor which absorbs blue light emitted by the blue LED 1 to emit a fluorescence having a main emission peak in the wavelength range from 550 nm to 600 nm, inclusive, and which contains, as a main component, a compound expressed by the chemical formula: (Sr1-a1-b1-xBaa1Cab1Eux)2SiO4 (0≦a1≦0.3, 0≦b1≦0.8 and 0
Abstract:
A light-emitting device is produced using a phosphor composition containing a phosphor host having as a main component a composition represented by a composition formula: aM3N2.bAlN.cSi3N4, where “M” is at least one element selected from the group consisting of Mg, Ca, Sr, Ba, and Zn, and “a”, “b”, and “c” are numerical values satisfying 0.2≦a/(a+b)≦0.95, 0.05≦b/(b+c)≦0.8, and 0.4≦c/(c+a)≦0.95. This enables a light-emitting device emitting white light and satisfying both a high color rendering property and a high luminous flux to be provided.
Abstract translation:使用含有以组成式aM3N2.bAlN.cSi3N4为代表的成分为主成分的荧光体主体的荧光体组合物制造发光元件,其中,“M”为选自Mg ,Ca,Sr,Ba和Zn,“a”,“b”和“c”是满足0.2 <= a /(a + b)<= 0.95,0.05 <= b /(b + )<= 0.8,且0.4 <= c /(c + a)<= 0.95。 这使得能够提供发出白光的发光装置,同时满足高显色性和高光通量。
Abstract:
A nitridosilicate-based compound is produced by reacting an alkaline-earth metal compound capable of generating an alkaline-earth metal oxide by heating or a rare earth compound capable of generating a rare earth oxide by heating with at least a silicon compound, while the alkaline-earth metal compound or the rare earth compound is being reduced and nitrided by the reaction with carbon in an atmosphere of nitriding gas. Because of this, a nitridosilicate-based compound of high quality can be produced industrially at low cost.
Abstract:
A phosphor composition that contains a phosphor host having as a main component a composition represented by a composition formula: MAlSiN3, where “M” is Sr or Sr in combination with at least one element selected from the group consisting of Mg, Ca, Ba, and Zn, in which Sr is a main component. The phosphor composition is activated by replacing a part of the M in the phosphor host composition with Eu2+. This enables a light-emitting device emitting white light and satisfying both a high color rendering property and a high luminous flux to be provided.
Abstract:
A light-emitting device is produced using a phosphor composition containing a phosphor host having as a main component a composition represented by a composition formula: aM3N2.bAlN.cSi3N4, where “M” is at least one element selected from the group consisting of Mg, Ca, Sr, Ba, and Zn, and “a”, “b”, and “c” are numerical values satisfying 0.2≦a/(a+b)≦0.95, 0.05≦b/(b+c)≦0.8, and 0.4≦c/(c+a)≦0.95. This enables a light-emitting device emitting white light and satisfying both a high color rendering property and a high luminous flux to be provided.
Abstract:
A chip-type light-emitting semiconductor device includes: a substrate 4; a blue LED 1 mounted on the substrate 4; and a luminescent layer 3 made of a mixture of yellow/yellowish phosphor particles 2 and a base material 13 (translucent resin). The yellow/yellowish phosphor particles 2 is a silicate phosphor which absorbs blue light emitted by the blue LED 1 to emit a fluorescence having a main emission peak in the wavelength range from 550 nm to 600 nm, inclusive, and which contains, as a main component, a compound expressed by the chemical formula: (Sr1-a1-b1-xBaa1Cab1Eux)2SiO4 (0≦a1≦0.3, 0≦b1≦0.8 and 0
Abstract translation:芯片型发光半导体器件包括:基板4; 安装在基板4上的蓝色LED1; 以及由黄色/黄色荧光体颗粒2和基材13(半透明树脂)的混合物制成的发光层3。 黄/黄色荧光体颗粒2是一种硅酸盐荧光体,其吸收由蓝色LED1发射的蓝色光,以发射在550nm至600nm的波长范围内具有主发光峰的荧光,并且其包含作为主要 组分,由化学式表示的化合物:(Sr 1-a 1-b 1-x Ba)a a1 Ca 2 Sb x x (0 <= a1 <= 0.3,0 <= b1 <= 0.8和0
Abstract:
A chip-type light-emitting semiconductor device includes: a substrate 4; a blue LED 1 mounted on the substrate 4; and a luminescent layer 3 made of a mixture of yellow/yellowish phosphor particles 2 and a base material 13 (translucent resin). The yellow/yellowish phosphor particles 2 is a silicate phosphor which absorbs blue light emitted by the blue LED 1 to emit a fluorescence having a main emission peak in the wavelength range from 550 nm to 600 nm, inclusive, and which contains, as a main component, a compound expressed by the chemical formula: (Sr1-a1-b1-xBaa1Cab1Eux)2SiO4 (0≦a1≦0.3, 0≦b1≦0.8 and 0
Abstract translation:芯片型发光半导体器件包括:基板4; 安装在基板4上的蓝色LED1; 以及由黄色/黄色荧光体颗粒2和基材13(半透明树脂)的混合物制成的发光层3。 黄/黄色荧光体颗粒2是一种硅酸盐荧光体,其吸收由蓝色LED1发射的蓝色光,以发射在550nm至600nm的波长范围内具有主发光峰的荧光,并且其包含作为主要 组分,由化学式表示的化合物:(Sr 1-a 1-b 1-x Ba)a a1 Ca 2 Sb x x (0 <= a 1 <= 0.3,0 <= b 1 <= 0.8和0
Abstract:
An oxynitride phosphor containing a luminescent center ion in a crystal lattice of an oxynitride is used, in which the oxynitride is a compound represented by a chemical formula: M2Si5-pAlpOpN8-p, where M is at least one element selected from the group consisting of Mg, Ca, Sr, Ba, and Zn, and p is a numerical value satisfying an expression: 0
Abstract translation:使用在氧氮化物的晶格中含有发光中心离子的氧氮化物荧光体,其中氧氮化物为化学式:M 2 Si 5-p SUB 其中M是至少一种选自Mg,Ca,Sr,以及它们中的至少一种元素, Ba和Zn,p是满足表达式0